Kinda looks like a bug in DualPolyhedron. You should report it, and see what WRI says.
Borrowing & adapting from my answer, https://mathematica.stackexchange.com/a/132920:
ClearAll[dual, sortvertices, reciprocate];
sortvertices[coords_, normal_, face_] :=
With[{proj = DeleteCases[
Orthogonalize[Join[{normal}, N@IdentityMatrix[3]]],
{0., 0., 0.}][[2 ;; 3]],
centroid = Mean[coords[[face]]]},
SortBy[face, ArcTan @@ (proj . (coords[[#]] - centroid)) &]];
reciprocate[face_?MatrixQ, r_ : 1] /; Length[face] >= 3 :=
r^2 {1, -1, 1} Most[#]/Last[#] &@
Reverse@ Last@ Minors@
Join[{{0, 0, 0, 0}},(dummy row)
PadRight[face[[;; 3]], {Automatic, 4}, 1]];
dual[Graphics3D@GraphicsComplex[coords_, Polygon[faces_]], r_ : 1] :=
With[{nvertices = Max@faces, nfaces = Length@faces},
With[{mat = SparseArray@ Flatten@
Table[{v, f} -> 1, {f, nfaces}, {v, faces[[f]]}],
dualcoords = reciprocate[coords[[#]], r] & /@ faces},
With[{dualfaces = mat["AdjacencyLists"]},
Graphics3D@ GraphicsComplex[dualcoords,
Polygon[Table[
sortvertices[dualcoords, coords[[v]], dualfaces[[v]]],
{v, Length@dualfaces}]]]]]];
dual[Graphics3D@GraphicsComplex[coords_, g_, ___], r_ : 1] :=
With[{res = dual[
Graphics3D@ GraphicsComplex[coords,
Replace[Cases[g, _Polygon, Infinity],
p : {__Polygon} :> Polygon[Join @@ p[[All, 1]]]]], r]},
res /; Head@res === Graphics3D];
Example. Dual in red. A good radius r for the polar reciprocation depends on the polyhedron; nearly coplanar faces makes the corresponding vertices far from the center (e.g. random seeds 41, 45, 50, 66).
SeedRandom[0];
myPoints = Transpose[Transpose@# - Mean[#] &@RandomReal[{-10, 10}, {10, 3}]];
convexPoly = ConvexHullMesh[myPoints, WorkingPrecision -> Infinity];
convexPolyG =
Graphics3D[
GraphicsComplex[MeshCoordinates@convexPoly,
First@convexPoly@"IndexedBoundaryPolygons"]];
Show[
MapAt[{Opacity[0.5], #} &, convexPolyG, {1, 2}],
(* dual *)
MapAt[
{Opacity[0.4], Red, #} &,
dual[convexPolyG,
Max[Norm /@ myPoints]/Sqrt@3], (* often a nice radius *)
{1, 2}]
]
Example. OP's sphere points.
myPoints = SpherePoints[11];
convexPoly = ConvexHullMesh[myPoints, WorkingPrecision -> Infinity];
convexPolyG =
Graphics3D[
GraphicsComplex[MeshCoordinates@convexPoly,
First@convexPoly@"IndexedBoundaryPolygons"]];
Show[
MapAt[{Opacity[0.5], #} &, convexPolyG, {1, 2}],
(* dual *)
MapAt[
{Opacity[0.4], Red, #} &,
dual[convexPolyG, 0.85],
{1, 2}]
]