I have a system of 6 1st order ODEs. Since, I don't have access to a Mathematica license yet, I have tried to solve the problem using Maxima but it failed. I have also tried Maple but it takes several hours then the software simply crashes.
I wonder if Mathematica could solve this system of ODEs:
diff(f(t),t) = -15.722 -89.755*f(t) + 1.192*x(t) -20.522*h(t) -101.456*f(t)^2 + 0.939*f(t)*x(t) + 41.345*f(t)*g(t) -70.537*f(t)*h(t) -0.271*x(t)*g(t) + 4.246*g(t)^2 + 8.767*g(t)*h(t) -3.25*h(t)^2,
diff(x(t),t) = -81429.279 + 114841.617*f(t) -549.97*x(t) + 149785.879*g(t) -599.101*y(t) -160497.335*h(t) -27.319*z(t) + 1721899.924*f(t)^2 -1117.648*f(t)*x(t) -386652.825*f(t)*g(t) -3087.313*f(t)*y(t) -2368.155*f(t)*h(t) + 425.026*f(t)*z(t) -3.547*x(t)^2 + 537.27*x(t)*g(t) + 1.582*x(t)*y(t) -805.526*x(t)*h(t) + 0.028*x(t)*z(t) -25833.096*g(t)^2 + 597.113*g(t)*y(t) + 97189.995*g(t)*h(t) -145.815*g(t)*z(t) -0.315*y(t)^2 -157.341*y(t)*h(t) -77306.535*h(t)^2 -39.105*h(t)*z(t) -0.37*z(t)^2,
diff(g(t),t) = 24.974 + 270.543*f(t) -0.304*x(t) -87.077*g(t) + 1.324*y(t) -1.43*h(t) + 682.7*f(t)^2 -1.172*f(t)*x(t) -448.244*f(t)*g(t) + 0.266*f(t)*y(t) + 7.795*f(t)*h(t) + 0.251*f(t)*z(t) + 54.566*g(t)^2 -0.171*g(t)*y(t) -15.812*g(t)*h(t) -10.325*h(t)^2 -0.18*h(t)*z(t),
diff(y(t),t) = 558255.344 + 3927732.918*f(t) -16311.34*x(t) -368818.217*g(t) -3562.042*y(t) -431711.16*h(t) + 1291.352*z(t) + 8775396.002*f(t)^2 -43186.863*f(t)*x(t) -3982744.391*f(t)*g(t) -14420.954*f(t)*y(t) + 306905.157*f(t)*h(t) + 1493.098*f(t)*z(t) + 22.638*x(t)^2 + 13587.668*x(t)*g(t) + 14.649*x(t)*y(t) -4819.379*x(t)*h(t) -8.782*x(t)*z(t) + 238574.183*g(t)^2 + 3562.853*g(t)*y(t) + 279799.995*g(t)*h(t) -2146.381*g(t)*z(t) -1.764*y(t)^2 -1174.223*y(t)*h(t) -0.609*y(t)*z(t) -452034.181*h(t)^2 -736.964*h(t)*z(t) + 1.509*z(t)^2,
diff(h(t),t) = -14.036 -226.65*f(t) -0.349*x(t) + 20.774*g(t) + 0.598*y(t) -8.65*h(t) + 1.276*z(t) -773.841*f(t)^2 -1.983*f(t)*x(t) + 47.953*f(t)*g(t) + 1.535*f(t)*y(t) -107.657*f(t)*h(t) + 1.423*f(t)*z(t) + 0.221*x(t)*g(t) -0.185*x(t)*h(t) + 13.429*g(t)^2 -0.387*g(t)*y(t) + 6.67*g(t)*h(t) -0.408*g(t)*z(t) + 0.317*y(t)*h(t) -4.393*h(t)^2,
diff(z(t),t) = -512379.34 -3748635.593*f(t) -32866.886*x(t) + 858047.636*g(t) + 5987.248*y(t) -759005.177*h(t) -321.996*z(t) -704671.07*f(t)^2 -92042.657*f(t)*x(t) + 2548473.477*f(t)*g(t) + 11364.094*f(t)*y(t) -490421.909*f(t)*h(t) -1747.524*f(t)*z(t) -2.934*x(t)^2 + 24426.966*x(t)*g(t) -2.318*x(t)*y(t) -17822.416*x(t)*h(t) + 18.989*x(t)*z(t) -335819.401*g(t)^2 -3789.785*g(t)*y(t) + 599080.396*g(t)*h(t) + 352.73*g(t)*z(t) + 0.966*y(t)^2 + 2579.875*y(t)*h(t) -1.916*y(t)*z(t) -183880.537*h(t)^2 -1103.295*h(t)*z(t) -1.478*z(t)^2
I appreciate any help.
EDIT: The initial conditions:
t0 = 2.083195363,
f(t0)=2.7604518140e-02,
x(t0)=6.39998111386,
g(t0)=6.07690217883e-01,
y(t0)=1.149214543557e+02,
h(t0)=-1.1758467477,
z(t0)=-7.980181509e+01
NDSoveto this end. – user64494 Sep 21 '21 at 10:15t==2.0832but Mathematica gives an error "NDSolveValue::ndsz: At t == 2.086949080697118`, step size is effectively zero; singularity or stiff system suspected." – Ulrich Neumann Sep 21 '21 at 11:10t0=2.132505169999999950e+00, f(t0)=3.011115631999999875e-02, x(t0)=9.535997718542907009e+00, g(t0)=9.042972289999999802e-01, y(t0)=1.004099163458574395e+02, h(t0)=-1.278683797100000019e+00, z(t0)=-1.960911326308590219e+01– Iyach tharwa nambarek Sep 21 '21 at 11:17