1

In this model I try to describe the kinematics of a point moving along a beziercurve b[u] (bezier parameter 0<u<1) with prescribed velocity v[u]. The motion is described by timedependent bezierparameter u[t] and angle of tangent \[Psi] [t ]

beziercurve(examplary):

b = BezierFunction[{{0, 0}, {1, 0}, {1, 1}}]

simulating constant velocity

v=1&
sol = NDSolveValue [{
\[Psi]'[ t  ] ==v[u[t]]   b''[u[t]] . Cross[b'[u[t]]]/(b'[u[t]] . b'[u[t]])^(3/2),
u'[t] ==v[u[t]] {Cos[\[Psi] [t ]], Sin[\[Psi] [t ]]} . b'[u[t]]/b'[u[t]] . b'[u[t]], 
\[Psi][0] == 0, u[0] == 0,WhenEvent[u[t] == 1, "StopIntegration"] }, {\[Psi], u}, {t, 0,3  }  ]

T = sol[[1]]["Domain"][[1, -1]] Plot[Through[sol[t]] // Evaluate, {t, 0, T }, PlotStyle -> {Blue, Red}]

enter image description here

model works fine as expected.

But if I change the velocity starting with v[0]==0

v = Min[1, (#/.1)^2] &     

NDSolve won't start anymore and returns u[t]==0 and \[Psi][t]==0!

What's wrong here? Thanks!

Ulrich Neumann
  • 53,729
  • 2
  • 23
  • 55

0 Answers0