G = 3.58;
ϵ = 0.1;
γ = 0.5;
α = 0.5;
η = 0.4;
Subscript[τ, 2] = 9.12;
τ = (2 x)/(2 - ϵ G (Cos[x] + Cos[x]));
ω = (x - τ)/(ϵ τ);
R = Sqrt[4/(9 γ) (Sin[x] +
Sin[Subscript[τ,
2] + ω ϵ Subscript[τ,
2]] + α - η/G)];
m = 2 R;
ParametricPlot[{τ, m}, {x, 0.0001, 500}, Frame -> True,
FrameLabel -> {"\!\(\*SubscriptBox[\(τ\), \(1\)]\)",
"Amplitude v"}, PlotRange -> {{0, 17}, {0, 3}}, PlotPoints -> 500,
PlotStyle -> {Red, Thick}, AspectRatio -> 2/2]
Asked
Active
Viewed 52 times
0
1 Answers
1
With the @flinty's suggestions you get the values as follows
pic = ParametricPlot[{\[Tau], m}, {x, 0.0001, 500}, Frame -> True,
FrameLabel -> {"\!\(\*SubscriptBox[\(\[Tau]\), \(1\)]\)",
"Amplitude v"}, PlotRange -> {{0, 17}, {0, 3}}, PlotPoints -> 500,
PlotStyle -> {Red, Thick}, AspectRatio -> 2/2] ;
[Tau]m = Cases[pic, Line[p_] :> p, Infinity]
Show[{pic, Graphics[Map[Point, [Tau]m]]}]
Ulrich Neumann
- 53,729
- 2
- 23
- 55

Subscript[τ, 2]because τ gets filled in with a value. Uset2instead. I get a plot after this fix. – flinty Dec 21 '21 at 11:32