I am trying to solve the following system of linear ODEs. It is an eigenvalue problem.
\[Chi] = 1;
m = 1.495;
\[Theta] = -\[Chi]^(-1/m)*(-1 + \[Chi]^(1/m));
n = Log[Abs[\[Chi]]];
l = 2;
k = 0;
a = Sqrt[(l^2 + k^2)];
Pr = 0.1;
Ta = 10^5;
[Phi] = Pi/4;
Ra = 2*10^(05);
sol1 = NDSolve[{(a^2 Pr + [Sigma]) Subscript[Z, 0][z] + (
m Pr [Theta] Subscript[Z, 1][z])/(1 + z [Theta]) ==
Pr (Sqrt[
Ta] ((I l Cos[[Phi]] + (m [Theta] Sin[[Phi]])/(
1 + z [Theta])) Subscript[W, 0][z] +
Sin[[Phi]] Subscript[W, 1][z]) +
Derivative[1][Subscript[Z, 1]][z]),
Pr (((3 (-2 + m) m [Theta]^4 + (a + a z [Theta])^4) Subscript[W,
0][z])/(1 + z [Theta])^4 + (
m [Theta] ((-4 + m) [Theta] Subscript[W, 2][z] +
2 (1 + z [Theta]) Subscript[W, 3][z]))/(1 + z [Theta])^2 +
Derivative[1][Subscript[W, 3]][z]) ==
a^2 Pr Ra Subscript[S, 0][z] + (
2 a^2 m^2 Pr [Theta]^2 Subscript[W, 0][z])/(
3 (1 + z [Theta])^2) + (
3 (-2 + m) m Pr [Theta]^3 Subscript[W, 1][z])/(1 +
z [Theta])^3 + (2 a^2 m Pr [Theta] Subscript[W, 1][z])/(
1 + z [Theta]) +
2 a^2 Pr Subscript[W, 2][
z] + [Sigma] ((-a^2 - (
m [Theta]^2)/(1 + z [Theta])^2) Subscript[W, 0][z] + (
m [Theta] Subscript[W, 1][z])/(1 + z [Theta]) +
Subscript[W, 2][z]) +
Pr Sqrt[Ta] (I Cos[[Phi]] ((k m [Theta] Subscript[W, 0][z])/(
1 + z [Theta]) + l Subscript[Z, 0][z]) +
Sin[[Phi]] Subscript[Z, 1][z]), (a^2 (1 +
z [Theta])^-m + [Sigma]) Subscript[S, 0][
z] == (1 + z [Theta])^(-1 -
m) ([Theta] Subscript[S, 1][z] + (1 + z [Theta])^
m Subscript[W, 0][z] + (1 + z [Theta]) Derivative[1][
Subscript[S, 1]][z]),
Subscript[W, 1][z] == Derivative[1][Subscript[W, 0]][z],
Subscript[W, 2][z] == Derivative[1][Subscript[W, 1]][z],
Subscript[W, 3][z] == Derivative[1][Subscript[W, 2]][z],
Subscript[S, 1][z] == Derivative[1][Subscript[S, 0]][z],
Subscript[Z, 1][z] == Derivative[1][Subscript[Z, 0]][z],
Subscript[S, 0][0] == 0, Subscript[S, 0][1] == 0,
Subscript[W, 0][0] == 0, Subscript[W, 0][1] == 0,
Subscript[Z, 1][0] == 0, Subscript[Z, 1][1] == 0,
Subscript[W, 2][0] +
m [Theta] Subscript[W, 1][0]/(1 + 0 [Theta]) == 0,
Subscript[W, 2][1] +
m [Theta] Subscript[W, 1][1]/(1 + [Theta]) == 0}, {Subscript[W,
0], Subscript[Z, 0], Subscript[S, 0], [Sigma]}, {z, 0, 1}]
Additional condition that can be used is
Subscript[Z, 0][0]==1
I want to solve for the unknown functions and sigma. But right now I am unable to do it. I tried to follow the approach given in https://reference.wolfram.com/language/tutorial/NDSolveBVP.html but it didn't work for me. Please help.
Thank you.


Subscript[Z, 1][0] == 1, Subscript[Z, 1][0] == 0, one of which is incorrect. What are the correct boundary conditions? Also, you need a ninth boundary condition to solve this problem, because the eigenvalue also is an unknown. – bbgodfrey Jan 04 '22 at 20:04Subscript[Z, 1][0] == 0, Subscript[Z, 1][0] == 0, which is a duplicate. Another boundary condition is needed to give a total of nine. Eight is sufficient only if all boundary conditions are homogeneous. – bbgodfrey Jan 05 '22 at 05:10