Consider the following nonlinear equation for $h[\lambda]$
\[Beta] = 4.1; \[Kappa] =
50 \[Beta]; lb0 = 10; ug = 30; kg = 10^-2 ; kb = 5; n = 50;
B1 = Sqrt[([Sigma]1 + Sqrt[[Sigma]1^2 - 4 kg [Kappa]])/(
2 [Kappa])]; B2 = Sqrt[([Sigma]1 -
Sqrt[[Sigma]1^2 - 4 kg [Kappa]])/(2 [Kappa])];
c[ [Lambda]_] := (ug - 1)/((2 [Pi] kg)/kb (1/B2^2 - 1/B1^2) +
1/2 Log[B1/B2] - 2 !(
*UnderoverscriptBox[([Sum]), (j = 1), (n)]((BesselK[*
StyleBox["0", "TI"], B1\ j\ [Lambda]\ ] - BesselK[*
StyleBox["0", "TI"], \ B2\ j\ [Lambda]\ ]))));
H[ [Lambda]_] := [Pi] c[ [Lambda]] kg (1/B2^2 - 1/B1^2) (n (ug - 1))
h[[Lambda]_] := D[H[ [Lambda]], [Lambda]]
The goal is to solve $h[\lambda]=0$ for different values of $\sigma1$. For example, for $\sigma1=0.08$ (assuming 50 as the start point)
\[Sigma]1 = 0.08;
FindRoot[h[\[Lambda]] == 0, {\[Lambda], 50}]
\[Sigma][1] = \[Sigma]1; \[Lambda]1[1] = Re[\[Lambda]] /. %;
which yields $\lambda=59.9638$. Now I want to increase the value of $\sigma1$ to 0.09 and use the root obtained for $\sigma1=0.08$ as the starting point to solve the new $h[\lambda]=0$ and continue doing it for $\sigma1=0.08, 0.09, 0.1, 0.11, ...$ and record the values of $\lambda1[1],\lambda1[2], ...$ for $\sigma1[1], \sigma1[2], ...$. For that, I need to make a loop that includes FindRoot and update the value of starting points anytime $h[\lambda]=0$ is solved for a given $\sigma1$. In other words, the starting point to find $\lambda1[i]$ for $\sigma1[i]$ must be $\lambda1[i-1]$ obtained for $\sigma1[i-1]$. How can I do that?


