I can get the volume enclosed by two orthogonal cylindrical surfaces when the radius of the bottom circle of the cylinder is a specific value (for example, r1=r2=2):
Clear["Global`*"];
v1 = ImplicitRegion[x^2 + y^2 <= 2^2, {x, y, z}];
v2 = ImplicitRegion[x^2 + z^2 <= 2^2, {x, y, z}];
v = RegionIntersection[v1, v2];
Volume[v]
(128/3)
How can I get the volume enclosed by two orthogonal cylindrical surfaces when the radius of the bottom circle of the cylinder is a variable "r" (r1==r2==r), not a specific value?
Assuming[r > 0, ImplicitRegion[{x^2 + y^2 <= r^2, x^2 + z^2 <= r^2}, {x, y, z}] // Volume]– cvgmt Feb 28 '22 at 02:01