It is easier to solve equations and impose conditions on parameters (here fval ), than to solve inequations.
(1 + 3^\[Lambda]*E^x + E^(3 x))/2^\[Lambda]/E^(2 x) <
10^-100 /. \[Lambda] -> 1800 /. x -> Log[10^420]
(* True *)
f = (1 + 3^\[Lambda]*E^x + E^(3 x))/2^\[Lambda]/E^(2 x);
Get rid of the Exp
sol1 = Flatten@Solve[E^x == ex, x,Reals] // Quiet
Transform f < 10^-100 to f == fval with fval < 10^-100
f2 = f - fval /. sol1 // Together // Numerator
Get solutions for ex (=E^x) with conditions for fval and lambda
sol = Solve[f2 == 0 && ex > 0 && \[Lambda] > 0 && fval < 10^-100, ex,
Reals, Method -> Reduce];
sol // N
(* {{ex -> ConditionalExpression[
Root[1 + 3^[Lambda] #1 - 2^[Lambda] fval #1^2 + #1^3 &, 2],
Root[-27 - 4 3^(3 [Lambda]) -
2^(1 + [Lambda]) 3^(2 + [Lambda]) #1 +
6^(2 [Lambda]) #1^2 + 2^(2 + 3 [Lambda]) #1^3 &, 3] <
fval < 1.*10^-100
&& [Lambda] > 1605.6]},
{ex ->
ConditionalExpression[
Root[1 + 3^[Lambda] #1 - 2^[Lambda] fval #1^2 + #1^3 &, 3],
Root[-27 - 4 3^(3 [Lambda]) -
2^(1 + [Lambda]) 3^(2 + [Lambda]) #1 +
6^(2 [Lambda]) #1^2 + 2^(2 + 3 [Lambda]) #1^3 &, 3] <
fval < 1.10^-100
&& [Lambda] > 1605.6]}} )
{{ex -> ConditionalExpression[ Root[1 + 3^\[Lambda] #1 - 2^\[Lambda] fval #1^2 + #1^3 &, 2], Root[-27 - 4 3^(3 \[Lambda]) - 2^(1 + \[Lambda]) 3^(2 + \[Lambda]) #1 + 6^(2 \[Lambda]) #1^2 + 2^(2 + 3 \[Lambda]) #1^3 &, 3] < fval < 1.*10^-100 && \[Lambda] > 1605.6]}, {ex -> ConditionalExpression[ Root[1 + 3^\[Lambda] #1 - 2^\[Lambda] fval #1^2 + #1^3 &, 3], Root[-27 - 4 3^(3 \[Lambda]) - 2^(1 + \[Lambda]) 3^(2 + \[Lambda]) #1 + 6^(2 \[Lambda]) #1^2 + 2^(2 + 3 \[Lambda]) #1^3 &, 3] < fval < 1.*10^-100 && \[Lambda] > 1605.6]}}
Retransform x==Log[ex]
(Log[ex] /. sol) /. \[Lambda] -> 2500 /. fval -> 6/10 10^-100 //
N[#, 10] &
(* {1244.432105, 1502.098616} *)
Reduce[f2 == 0 && ex > 0 && [Lambda] > 0 && fval < 10^-100, ex, Reals]//N
\[Lambda] > 1605.6 && ((fval == Root[-27 - 4 3^(3 \[Lambda]) - 2^(1 + \[Lambda]) 3^(2 + \[Lambda]) #1 + 6^(2 \[Lambda]) #1^2 + 2^(2 + 3 \[Lambda]) #1^3 &, 3] && ex == Root[1 + 3^\[Lambda] #1 - 2^\[Lambda] fval #1^2 + #1^3 &, 2]) || (Root[-27 - 4 3^(3 \[Lambda]) - 2^(1 + \[Lambda]) 3^(2 + \[Lambda]) #1 + 6^(2 \[Lambda]) #1^2 + 2^(2 + 3 \[Lambda]) #1^3 &, 3] < fval < 1.*10^-100 && (ex == Root[1 + 3^\[Lambda] #1 - 2^\[Lambda] fval #1^2 + #1^3 &, 2] || ex == Root[ 1 + 3^\[Lambda] #1 - 2^\[Lambda] fval #1^2 + #1^3 &, 3])))
Edit made by @user6494. For the user's convenience (In order not to read the below comments.), I fixed the omitted Reals in sol1 = Flatten@Solve[E^x == ex, x,Reals] // Quiet.
In version my version 8.0 Reals is not neccessary. (Akku14)
MinLimit[(1 + 3^\[Lambda]*E^x + E^(3 x))/2^\[Lambda]/ E^(2 x), {\[Lambda], x} -> {Infinity, Infinity}, Direction -> "FromBelow"]results in-Infinitywhich is wrong since the function takes only positive values. – user64494 Mar 03 '22 at 06:55