0

Reference, Oak Island, extending the "Alignment", possible Great Circle, question already answered on Mathematica.

I can see illustration, but have no way to determine if Morgantown, WV, is on this plotted line.

Jagra
  • 14,343
  • 1
  • 39
  • 81

1 Answers1

3

Honestly, the OP would better put this as a comment on the original thread.

Might make it interesting, if we had some context for the question. Treasure buried in West Virginia?

That said, I added latitude and longitude coordinates for Mogantown, WV in the following code (not particularly elegant).

Manipulate[
 Module[
  {rx, rz, u, v, SC, r, places, dom, ver, oak, pos, nyc, verona, 
   theso, izmir, socrota, palace, chaco, centers, mwv}, 
  ver = {48.81008221499617, 2.100137383293789};
  oak = {44.5167, -64.2992};
  dom = {31.778063322333196, 35.23541700515525};
  pos = {19.69242584751161, -98.84353081841152};
  nyc = {40.688943330006296, -74.04594759881309};
  mwv = {39.628672338323284, -79.94963581871055};
  verona = {45.43984116351433, 10.998023166145238};
  socrota = {12.551296, 54.515833};
  theso = {40.63271743626375, 22.946026906725685};
  izmir = {38.40925238535213, 27.145629351830948};
  palace = {19.42374, -99.13467};
  chaco = {36.0530, -107.9559};
  centers = {dom, ver, oak, pos, nyc, mwv, verona, theso, izmir, 
    socrota , palace, chaco };
  rx = RotationTransform[
    deg Degree, {0, 1, 
     0}] (*Rotation deg\[Degree] out of the xy plane*);
  rz = RotationTransform[\[Phi] Degree, {0, 0, 
     1}]     (*Spin around z axis*);
  {u, v} = rz@rx@{{1, 0, 0}, {0, 1, 0}};
  SC[{lat_, lon_}] := 
   r {Cos[lon \[Degree]] Cos[lat \[Degree]], 
     Sin[lon \[Degree]] Cos[lat \[Degree]], Sin[lat \[Degree]]};
  r = 1;
  places = CountryData["Countries"];

Column[ { Show[ Graphics3D[{Opacity[0.95], Sphere[{0, 0, 0}, r], Map[ Line[Map[SC, CountryData[#, "SchematicCoordinates"], {-2}]] &, places], {Red, PointSize[Large], Point[SC[#]] & /@ centers}}, Boxed -> False, SphericalRegion -> True, ViewAngle -> .3, ImageSize -> 600], ParametricPlot3D[{Cos[[Theta]] u + Sin[[Theta]] v,(The great circle in
question
){Cos[[Theta]], Sin[[Theta]], 0},(Normal unit circle) RotationTransform[[Theta], {0, 0, 1}] /@ {u, -u} (Red circles at top& bottom of great
circle
)}, {[Theta], -Pi, Pi}, PlotStyle -> {Directive[Blue, Medium], Directive[Black, Thin], Directive[Red, Thin]}]],

Grid[{
  {"Interesting points on/near Great Circle", SpanFromLeft, 
   SpanFromLeft},
  {},
  {"", "Latitude", "Longitude"},
  {"   Socrota", 12.551296, 54.515833},
  {"   Temple Mount", 31.77806332233319, 
   35.23541700515525}, {"   Iizmir", 38.40925238535213, 
   27.145629351830948}, {"   Thesalaniki", 40.63271743626375, 
   22.946026906725685}, {"   Verona", 45.43984116351433, 
   10.998023166145238}, {"   Versailles", 48.81008221499617, 
   2.100137383293789},
  {"   Oak Island", 44.5167, -64.2992},
  {"   New York", 40.688943330006296, -74.04594759881309},
  {"   Morgantown, WV", 39.628672338323284, -79.94963581871055},
  {"   Pyramid of the Sun", 19.69242584751161, -98.84353081841152},
  {"   Montezuma's palace", 19.42374, -99.13467},
  {"   Chaco Canyon", 36.0530, -107.9559}
  },
 Alignment -> {{Left, ".", "."}, Automatic}, 
 Dividers -> {None, {4 -> Gray}}
 ]
}

] ], {{deg, 128, "Inclination"}, -180, 180, 0.05, Appearance -> "Open"}, {{[Phi], 335}, 0, 360, 1, Appearance -> "Open"} ]

enter image description here

It does not appear to fall on the great circle discussed in the original thread.

Jagra
  • 14,343
  • 1
  • 39
  • 81