Reference, Oak Island, extending the "Alignment", possible Great Circle, question already answered on Mathematica.
I can see illustration, but have no way to determine if Morgantown, WV, is on this plotted line.
Reference, Oak Island, extending the "Alignment", possible Great Circle, question already answered on Mathematica.
I can see illustration, but have no way to determine if Morgantown, WV, is on this plotted line.
Honestly, the OP would better put this as a comment on the original thread.
Might make it interesting, if we had some context for the question. Treasure buried in West Virginia?
That said, I added latitude and longitude coordinates for Mogantown, WV in the following code (not particularly elegant).
Manipulate[
Module[
{rx, rz, u, v, SC, r, places, dom, ver, oak, pos, nyc, verona,
theso, izmir, socrota, palace, chaco, centers, mwv},
ver = {48.81008221499617, 2.100137383293789};
oak = {44.5167, -64.2992};
dom = {31.778063322333196, 35.23541700515525};
pos = {19.69242584751161, -98.84353081841152};
nyc = {40.688943330006296, -74.04594759881309};
mwv = {39.628672338323284, -79.94963581871055};
verona = {45.43984116351433, 10.998023166145238};
socrota = {12.551296, 54.515833};
theso = {40.63271743626375, 22.946026906725685};
izmir = {38.40925238535213, 27.145629351830948};
palace = {19.42374, -99.13467};
chaco = {36.0530, -107.9559};
centers = {dom, ver, oak, pos, nyc, mwv, verona, theso, izmir,
socrota , palace, chaco };
rx = RotationTransform[
deg Degree, {0, 1,
0}] (*Rotation deg\[Degree] out of the xy plane*);
rz = RotationTransform[\[Phi] Degree, {0, 0,
1}] (*Spin around z axis*);
{u, v} = rz@rx@{{1, 0, 0}, {0, 1, 0}};
SC[{lat_, lon_}] :=
r {Cos[lon \[Degree]] Cos[lat \[Degree]],
Sin[lon \[Degree]] Cos[lat \[Degree]], Sin[lat \[Degree]]};
r = 1;
places = CountryData["Countries"];
Column[
{
Show[
Graphics3D[{Opacity[0.95], Sphere[{0, 0, 0}, r],
Map[
Line[Map[SC, CountryData[#, "SchematicCoordinates"], {-2}]] &,
places], {Red, PointSize[Large], Point[SC[#]] & /@ centers}},
Boxed -> False, SphericalRegion -> True, ViewAngle -> .3,
ImageSize -> 600],
ParametricPlot3D[{Cos[[Theta]] u +
Sin[[Theta]] v,(The great circle in
question){Cos[[Theta]], Sin[[Theta]], 0},(Normal unit circle)
RotationTransform[[Theta], {0, 0,
1}] /@ {u, -u} (Red circles at top& bottom of great
circle)}, {[Theta], -Pi, Pi},
PlotStyle -> {Directive[Blue, Medium], Directive[Black, Thin],
Directive[Red, Thin]}]],
Grid[{
{"Interesting points on/near Great Circle", SpanFromLeft,
SpanFromLeft},
{},
{"", "Latitude", "Longitude"},
{" Socrota", 12.551296, 54.515833},
{" Temple Mount", 31.77806332233319,
35.23541700515525}, {" Iizmir", 38.40925238535213,
27.145629351830948}, {" Thesalaniki", 40.63271743626375,
22.946026906725685}, {" Verona", 45.43984116351433,
10.998023166145238}, {" Versailles", 48.81008221499617,
2.100137383293789},
{" Oak Island", 44.5167, -64.2992},
{" New York", 40.688943330006296, -74.04594759881309},
{" Morgantown, WV", 39.628672338323284, -79.94963581871055},
{" Pyramid of the Sun", 19.69242584751161, -98.84353081841152},
{" Montezuma's palace", 19.42374, -99.13467},
{" Chaco Canyon", 36.0530, -107.9559}
},
Alignment -> {{Left, ".", "."}, Automatic},
Dividers -> {None, {4 -> Gray}}
]
}
]
],
{{deg, 128, "Inclination"}, -180, 180, 0.05,
Appearance -> "Open"}, {{[Phi], 335}, 0, 360, 1,
Appearance -> "Open"}
]
It does not appear to fall on the great circle discussed in the original thread.