You need a null-space solver.
equs = {x2 == z2, x3 == z3, x5 == z5, w2 == y2, w4 == y4, w5 == y5,
x1 == y1, x4 == y4, x3 == y5, w1 == z1, w4 == z4, w5 == z3,
x1 == z1, x4 == z4, x5 == z5, w1 == y1, w3 == y3, w4 == y4,
x2 == y2, x5 == y3, x4 == y5, w2 == z2, w3 == z5, w5 == z4};
Let's first convert your equations a bit. Convert to a list of terms that must be zero:
zero = equs /. Equal -> Subtract
(* {x2 - z2, x3 - z3, x5 - z5, w2 - y2, w4 - y4, w5 - y5, x1 - y1,
x4 - y4, x3 - y5, w1 - z1, w4 - z4, w5 - z3, x1 - z1, x4 - z4,
x5 - z5, w1 - y1, w3 - y3, w4 - y4, x2 - y2, x5 - y3, x4 - y5,
w2 - z2, w3 - z5, w5 - z4} *)
Extract the list of variables:
vars = Sort@Variables[Times @@ zero]
(* {w1, w2, w3, w4, w5, x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, z1, z2, z3, z4, z5} *)
Express the equations as a matrix $M$ that, when multiplied by the list of variables, must give a zero vector:
M = D[zero, {vars}]
$$
\left(
\begin{array}{cccccccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
\end{array}
\right)
$$
Now we know that M . vars must give zeros, so vars must be a linear combination of vectors from the null space of M:
nullvecs = NullSpace[M]
(* {{0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1},
{0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0},
{0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0},
{1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0}} *)
So any solution vector that is such a linear combination will satisfy the equations:
sol = {a, b, c, d} . nullvecs
(* {d, c, a, b, b, d, c, b, b, a, d, c, a, b, b, d, c, b, b, a} *)
Check:
equs /. Thread[vars -> sol]
(* {True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True,
True, True, True, True} *)
infolevel[solve] := 4; solve({w1 = y1, w1 = z1, w2 = y2, w2 = z2, w3 = y3, w3 = z5, w4 = y4, w4 = z4, w5 = y5, w5 = z3, w5 = z4, x1 = y1, x1 = z1, x2 = y2, x2 = z2, x3 = y5, x3 = z3, x4 = y4, x4 = y5, x4 = z4, x5 = y3, x5 = z5}, {w1, w2, w3, w4, w5, x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, z1, z2, z3, z4, z5});, Maple uses linear solver to this end. – user64494 Mar 23 '22 at 12:44