It is, sadly, simple round-off error. (I was hoping to learn something more interesting.)
Lets look at f[10]:
f10 = f[10]
(*
(1835008 (43551160253105097901 π^20 Zeta[3]^10 -
4808402859534428003850 π^18 Zeta[3]^9 Zeta[5] +
238905994054787308522350 π^16 Zeta[3]^8 Zeta[5]^2 -
7034330305341815976769500 π^14 Zeta[3]^7 Zeta[5]^3 +
135925793707604259244173750 π^12 Zeta[3]^6 Zeta[5]^4 -
1801105572337397766462487500 π^10 Zeta[3]^5 Zeta[5]^5 +
16574098514883746872868437500 π^8 Zeta[3]^4 Zeta[5]^6 -
104587763224772152070746875000 π^6 Zeta[3]^3 Zeta[5]^7 +
433131075279238064824511718750 π^4 Zeta[3]^2 Zeta[5]^8 -
1063000622677773009307148437500 π^2 Zeta[3] Zeta[5]^9 +
1174035206087269790337070312500 Zeta[5]^10)) /
(138567 (77 π^2 Zeta[3] - 930 Zeta[5])^10)
*)
The terms being added/subtracted in the numerator and denominator are quite large:
{nf, df} = N@N[NumeratorDenominator[f10], $MachinePrecision];
terms1 = Numerator@f10 /. Plus -> List // N
terms2 = Denominator@f10 /. Plus -> List // N
(*
{4.4145410^36, -4.2600110^37, 1.8499510^38, -4.760810^38,
8.0404910^38, -9.3120110^38, 7.4895910^38, -4.1307910^38,
1.4951810^38, -3.2072510^37, 3.0960210^36}
{5.6080910^34, 9.6377210^34}
)
The expected round-off error is approximately:
1/df^2 (df*Abs@Max[terms1*$MachineEpsilon/2] Sqrt@Length@terms1 +
nf*Abs@Max[terms2*$MachineEpsilon/2] Sqrt@Length@terms2)
(* 18.5673 *)
Since f[10] is exact, one can use the adaptive-precision capability of N[] to compute an accurate value by giving it a numeric target precision in its second argument. For instance, we can use $MachinePrecision, which is 15.95... (but not the symbol MachinePrecision, which represents machine precision, the default target precision of N[expr]):
N@N[f10, $MachinePrecision]
(* 3.02495 *)
With f[10.] the internal code does not make the polynomial expansion, but goes straight to the numerical routine for calculating ${}_2F_1$.
Total@N[List @@ (f[10] // Apart)]evaluates to3.02495– Bob Hanlon Apr 30 '22 at 15:39