Let us switch to rationals by
R = Rationalize[-((28359.7 (25.64 - 8. Cos[(2 \[Phi])/3]) (-145751. -
42339.7 Cos[0.666667 \[Phi]]))/(6.35447*10^9 +
1.09431*10^10 Cos[(2 \[Phi])/3] +
0.8 (1.36789*10^10 + 4.88831*10^8 Cos[(2 \[Phi])/3]) Cos[
0.666667 \[Phi]])) - ((28359.7 (25.64 -
8. Cos[(2 \[Phi])/3]) (-145751. -
42339.7 Cos[0.666667 \[Phi]]))/(6.35447*10^9 +
1.09431*10^10 Cos[(2 \[Phi])/3] +
0.8 (1.36789*10^10 + 4.88831*10^8 Cos[(2 \[Phi])/3]) Cos[
0.666667 \[Phi]])), 10^-6];
Now we find the singularity
Reduce[Denominator[%] == 0 && \[Phi] >= 0 && \[Phi] <= 2*Pi, \[Phi], Reals]
\[Phi] == 3/2 ArcCos[((-11474682511359999 + Sqrt[ 128936041852524956596599521280001])/410061163724800)
and verify whether the principal value exists:
Normal[Series[R, {\[Phi], 3/2 ArcCos[(-11474682511359999 + Sqrt[
128936041852524956596599521280001])/410061163724800], 1}]]
(283597 (-\ 8150874560502974171386525279586377768479544128931229678029921919909621\ 7882393287690779 + 7177980461245791809133043915542851489143779773506255352808120017\ 909221 Sqrt[ 128936041852524956596599521280001]))/(\ 1890838028244348811742170217604725064930000 Sqrt[ 128936041852524956596599521280001] \ (-43406038405173438824145660586667 + 3824894170453333 Sqrt[ 128936041852524956596599521280001])) + (283597 \ (-12788928541097983 + Sqrt[ 128936041852524956596599521280001]) (-4260677904521756248603 + 423397 Sqrt[ 128936041852524956596599521280001]) \ \[Sqrt](3/(257872083705049913193199042560002 \ (-43406038405173438824145660586667 + 3824894170453333 Sqrt[ 128936041852524956596599521280001]))))/(9776620000 \ (\[Phi] - 3/2 ArcCos[(-11474682511359999 + Sqrt[ 128936041852524956596599521280001])/ 410061163724800])) + (283597 \ (-14155375205447098928680471998526538311923178615746222212518203042223\ 03228798422400804127604557075641388359898840791914277845526702933 + 1246620367110647775006547791183469130900148171581433830671783967\ 60849011665904411755292709563971603283924005230417067 Sqrt[ 128936041852524956596599521280001]) (\[Phi] - 3/2 ArcCos[(-11474682511359999 + Sqrt[ 128936041852524956596599521280001])/ 410061163724800]))/(\ 157569835687029067645180851467060422077500 Sqrt[ 773616251115149739579597127680006] \ (-43406038405173438824145660586667 + 3824894170453333 Sqrt[128936041852524956596599521280001])^(5/2))
The above long output confirms it. In principal,
Integrate[R, {\[Phi], 0, 2*Pi}, PrincipalValue -> True]
should work, but its execution is spinning on my comp. Because of this reason, let us switch to numeric integration by
NIntegrate[R, {\[Phi], 0,
3/2 ArcCos[(-11474682511359999 + Sqrt[128936041852524956596599521280001])/410061163724800], 2*Pi}, Method -> PrincipalValue]
-31.6315
The result is a negative number despite your claim.
To be sure, let us verify it by the definition of the principal value
NIntegrate[ R, {\[Phi], 0,
3/2 ArcCos[(-11474682511359999 + Sqrt[128936041852524956596599521280001])/410061163724800] - 0.01}] +
NIntegrate[ R, {\[Phi], 3/2 ArcCos[(-11474682511359999 + Sqrt[
128936041852524956596599521280001])/410061163724800] + 0.01, 2*Pi}]
-31.603
Addition. Working only with the original function,
NSolve[Denominator[-((28359.7 (25.64 -
8. Cos[(2 \[Phi])/3]) (-145751. -
42339.7 Cos[0.666667 \[Phi]]))/(6.35447*10^9 +
1.09431*10^10 Cos[(2 \[Phi])/3] +
0.8 (1.36789*10^10 + 4.88831*10^8 Cos[(2 \[Phi])/3]) Cos[
0.666667 \[Phi]]))] == 0 && \[Phi] >= 0 && \[Phi] <= 2*Pi, \[Phi], Reals]
{{\[Phi] -> 2.80046}}
, we obtain
NIntegrate[-((28359.7 (25.64 - 8. Cos[(2 \[Phi])/3]) (-145751. -
42339.7 Cos[0.666667 \[Phi]]))/(6.35447*10^9 +
1.09431*10^10 Cos[(2 \[Phi])/3] +
0.8 (1.36789*10^10 + 4.88831*10^8 Cos[(2 \[Phi])/3]) Cos[
0.666667 \[Phi]])), {\[Phi], 0, 2.800455227678918`, 2*Pi}, Method -> PrincipalValue]
-15.8158
without any warnings/errors. As we see, Rationalize somewhat changes the result quantitatively, but not qualitatively.
PS. It should be noticed that
N[3/2 ArcCos[(-11474682511359999 +
Sqrt[128936041852524956596599521280001])/410061163724800]]
2.80046
NIntegrate[R, {\[Phi],0,2 Pi},Method->"PrincipalValue",Exclusions->{2.80046}]returns33.707but I wouldn't trust any of this with constants like 6.3544710^9, 1.0943110^10, 1.3678910^10, 4.8883110^8 in your denominator. – Bill May 23 '22 at 14:47Cos[0.666667 \[Phi]]withCos[2 \[Phi]/3]like your other threeCosexpressions and then doingFullSimplifyon that whole expression returns a result with far smaller constants. Giving that toNIntegrate[R,{\[Phi],0,2 Pi},Method->"PrincipalValue",Exclusions->{2.80046}]returns 2.3526. See how fragile and badly conditioned your problem is? No one can know what the accurate result should be. – Bill May 23 '22 at 15:26Rationalizecan give you 20 or even 50 digit numbers as exact fractions, But that is just replacing one badly conditioned problem with another, neither one of which will give an answer which means anything. If you need an answer that you can depend on then I would suggest you go back and carefully derive a well conditioned problem before trying to give anything to Mathematica. – Bill May 23 '22 at 15:33Rationalizeeffectively assumes all decimal approximations are infinitely precise. But decimal approximations are almost never infinitely precise. For example, take every subset of coefficients in his problem and increase or decrease or leave alone each by a factor of 10^-7 and then perform the integration, or even just very carefully plot all those different integrands and see how large a band of uncertainty there is. UnfortunatelyNIntegrateisn't telling him that the integral is zero+/-30 because of uncertainty in the decimal approximations. If it did that then he would know – Bill May 23 '22 at 19:36