how I can use StreamPlot or VectorPlot to show x[t] and 1-x[t] and show convergence point in my plot with a different colour like a blue point?
G1 = 21290/27
G2 = 23879130/2809
G3 = 13572050/2809
G4 = 1809025/288
U1[t_] := x[t] (G1) + (1 - x[t]) (G2)
U2[t_] := (1 - x[t]) (G3) + x[t] (G4)
x'[t] == x[t] (1 - x[t]) (U1[t] - U2[t])
I want to plot something like below pic:

Epilog -> {Blue, Point[{...,...}]}inStreamPlot, where...should be replaced by appropriate coordinates. – Michael E2 Jul 29 '22 at 17:18x[t] == 0.4and1 - x[t] == 0.2, say? The conditions are inconsistent. As coordinates{x[t], 1 - x[t]}parametrizes the diagonal. The vector field below/above looks like±{x,1-y}in {x,y}-coordinates with special cases along the diagonal. You should probably specify the components of the vector field, mathematically if not in code. – Michael E2 Jul 29 '22 at 22:43With[{am = ArrayMesh[SparseArray[{{_, _} -> 1}, {15, 15}, 0]]}, mesh = MeshRegion[ Rescale@MeshCoordinates[am], MeshCells[am, 2] ] ]; VectorPlot[Piecewise[{ {{x, y}, x < 1 - y}, {-{x, y}, x > 1 - y}, {{1, -1}, x == 1 - y && x < 7/10}}, {-1, 1}], {x, y} \[Element] mesh, FrameLabel -> {x, y}, VectorPoints -> "Mesh", Epilog -> {Blue, PointSize@Medium, Point[{7/10, 1 - 7/10}]}]– Michael E2 Jul 29 '22 at 23:11