2

I want to find the Slopefield curve for the ODE

\begin{equation} y'=y^{2/3} \end{equation}

at the points given under.

In[72]:= ClearAll

In[77]:= initvalues1 = {{0, 0}, {-1, 3}, {3, 3}}

Out[77]= {{0, 0}, {-1, 3}, {3, 3}}

In[78]:= SlopeField[Evaluate[y' == 2 y^(2/3)], {y, -6., 6.}, {x, -6., 6.}, initvalues1]

Out[78]= SlopeField[ 1/27 (6 C[1]^2 + 24 C[1] #1 + 24 #1^2) & == 2 y^(2/3), {y, -6., 6.}, {x, -6., 6.}, {{0, 0}, {-1, 3}, {3, 3}}]

But I get no plot at all.

Any ideas why?

Thanks

Vangsnes
  • 591
  • 2
  • 9

1 Answers1

5

Maybe use VectorPlot and CubeRoot for y^(1/3).

initvalues1 = {{0, 0}, {-1, 3}, {3, 3}};
VectorPlot[{1, 2 CubeRoot[y^2]}, {x, -6, 6}, {y, -6, 6}, 
 VectorPoints -> initvalues1, 
 Epilog -> {Black, PointSize[Medium], Point[initvalues1]}]

enter image description here

Or

StreamPlot[{1, 2 CubeRoot[y^2]}, {x, -6, 6}, {y, -6, 6}, 
 VectorPoints -> initvalues1, 
 Epilog -> {Black, PointSize[Medium], Point[initvalues1]}]

enter image description here

  • emphasize some lines
initvalues1 = {{0, 0}, {-1,3},{3,3}};
 colors = {Red, Green, Yellow};
 StreamPlot[{1, 2 CubeRoot[y^2]}, {x, -6, 6}, {y, -6, 6}, 
 VectorPoints -> initvalues1, 
 Epilog -> {Black, PointSize[Medium], Point[initvalues1]}, 
 StreamPoints -> {{Sequence @@ Thread[{initvalues1, colors}], 
    Automatic}}, StreamColorFunction -> None]

enter image description here

cvgmt
  • 72,231
  • 4
  • 75
  • 133