How I can solve these five non-liner equations
where n=3, x=1,3,8 (e.g), and a,b,c, Alpha and Beta should be estimated.
x = {1, 3, 8}; n = Length[x]; eqn1 = n*D[Beta[a, b], a]/Beta[a, b] -
alpha*c*Sum[x[[i]]^(-beta), {i, 1, n}] == 0; eqn2 = Sum[Log[1 - Exp[-alpha*c*x[[i]]^(-beta)]], {i, 1, n}] - n*D[Beta[a, b], b]/Beta[a, b] == 0; eqn3 = n/c - alpha*a*Sum[x[[i]]^(-beta), {i, 1, n}] + alpha*(b - 1)*Sum[(x[[i]]^(-beta)*Exp[alpha*c*x[[i]]^(-beta)])/(1 - Exp[-alpha*c*x[[i]]^(-beta)]), {i, 1, n}] == 0; eqn4 = n/alpha - c*a*Sum[x[[i]]^(-beta), {i, 1, n}] + c*(b - 1)*Sum[(x[[i]]^(-beta)*Exp[-alpha*c*x[[i]]^(-beta)])/(1 - Exp[-alpha*c*x[[i]]^(-beta)]), {i, 1, n}] == 0; eqn5 = n/beta - Sum[Log[x[[i]]], {i, 1, n}] + alpha*a*c*Sum[Log[x]*x[[i]]^(-beta), {i, 1, n}] + alpha*beta*c*(b - 1)*Sum[(x[[i]]^(-beta)*Exp[-alpha*c*x[[i]]^(-beta)])/(1 - Exp[-alpha*c*x[[i]]^(-beta)]), {i, 1, n}] == 0; FindRoot[{eqn1, eqn2, eqn3, eqn4, eqn5}, {{a, 0.1}, {b, 0.1}, {c, 0.1}, {alpha, 0.1}, {beta, 0.1}}]
This is not working, and not sure {a,0.1} etc 0.1 is the initial value.
FindRoot. Edit the code into the question, and we can try and help you get it working. – bill s Jun 21 '13 at 13:00