You can try making ansatz like the following.
defining the manifold and fields
DefManifold[M,dim,IndexRange[a,z]];
DefMetric[-1,metric[-a,-b],CD,SymbolOfCovD->{";","\[Del]"},PrintAs->"g"];
DefTensor[A[-a],M];
DefTensor[F[-a,-b],M,Antisymmetric[{-a,-b}]];
making ansatz
expr[]=CD[-b]@CD[-a]@A[b]-CD[-b]@CD[b]@A[-a]
ruleFToA=MakeRule[{F[a,b],CD[a]@A[b]-CD[b]@A[a]}];
ansatz[1]=MakeContractionAnsatz[CD[a]@F[b,c],{-a},ConstantPrefix->"a"];
ansatz[2]=MakeContractionAnsatz[CD[a]@CD[b]@A[c],{-a},ConstantPrefix->"b"];
ansatz[0]=(ansatz[1]/.ruleFToA)+ansatz[2]

comparing the constants
SolveConstants[expr[]==ansatz[0]]
ansatz[1]+ansatz[2]/.First@Out[]

now taking $a_1=1$ we get the result that
\begin{equation}
\nabla_{b}\nabla_{a}A^{b} - \nabla_{b}\nabla^{b}A_{a}
\end{equation}
can be collected into $\nabla_{b}F_{a}{}^{b}$.