I have the following m first-order IVPs
d(y1)/dx=f1(x,y1,…,ym), y1(x0)=y10,
d(y2)/dx=f2(x,y1,…,ym), y2(x0)=y20,
⋮
d(ym)/dx =fm(x,y1,…,ym), ym(x0)=ym0.
The above system can be written using vector notations as
dY/dx =F(x,Y ), Y(x0) = Y0,
where Y =(y1,…,ym), F =(f1,…,fm), and Y0=(y10,…,ym0).
By applying the RK4 method
k1=h*F(xn,Y(xn)),
k2=h*F(xn + 0.5h,Y(xn) + 0.5k1),
k3=h*F(xn + 0.5h, Y(xn) + 0.5k2),
k4=h*F(xn + h, Y(xn) + k3)
the solutions are then given byY(xn+1) = Y(xn)+1/6(k1+2k2+2k3+k4).
Example :
x1’=x2, x1(0)=1,
x2=x3, x2(0)=2,
x3’=x4, x3(0)=3,
x4’= −8*x1+sin(t)*x2−3*x3 + t^2, x4(0)=4.
How to write a code to implement the Runge-Kutta 4th order to solve the above m first order IVPs using Mathematica.

NDSolve. – xzczd Sep 30 '22 at 16:34