ClearAll["Global`*"]
Manipulate[Module[{place,velocity,sol, g, m},sol = NDSolve[{-2*g*m*x[t]+4*m*x[t]*(x'[t])^2-0.5*m*(16*x[t]*(x'[t])^2+2*x''[t]+8*(x[t])^2*x''[t])==0, x[0] == place, x'[0]==velocity}, x, {t, p-1, p},MaxSteps->100000];Graphics[{White, Rectangle[{-10,-10},{10,10}],Black,Disk[{sol[t], (sol[t])^2},0.1]}]], {{g, 9.8, "gravitational acceleration"}, 1, 100, Appearance->"Labeled"}, {{m, 2, "mass"}, 1, 10, Appearance-> "Labeled"}, {{place, 5, "starting place"}, -10, 10, Appearance->"Labeled"}, {{velocity, 2, "starting velocity"}, 1, 10, Appearance-> "Labeled"}, {{p, 0, "animation"}, 0, Infinity, ControlType -> Trigger}]
It just shows a white square with that small black disk on it. But there is no animation whatsoever.
What is wrong with my code? Also, it would be nice to somehow include a parabola too, so we can see how that ball rolls up and down along it

Module. Second, replaceNDSolvewithNDSolveValue. Third, fix the integration limits inNDSolveValue[..., {t, 0, 10}]. Fourth, useDisk[{sol[p], (sol[p])^2}, 0.1]. With these fixes, the code at least runs ... – Domen Oct 15 '22 at 23:02Manipulate[sol = NDSolveValue[{-2*g*m*x[t] + 4*m*x[t]*(x'[t])^2 - 0.5*m*(16*x[t]*(x'[t])^2 + 2*x''[t] + 8*(x[t])^2*x''[t]) == 0, x[0] == place, x'[0] == velocity}, x, {t, 0, 10}, MaxSteps -> 100000]; Graphics[{White, Rectangle[{-10, -10}, {10, 10}], Black, Disk[{sol[p], (sol[p])^2}, 0.1]}] , {{g, 9.8, "gravitational acceleration"}, 1, 100}, {{m, 2, "mass"}, 1, 10}, {{place, 5, "starting place"}, -10, 10}, {{velocity, 2, "starting velocity"}, 1, 10}, {{p, 0, "animation"}, 0, Infinity, ControlType -> Trigger}]– Domen Oct 15 '22 at 23:14