I'm new to Mathematica.
Say $N(\xi, \eta)$ (NSHAPE in code below) is a 2x6 matrix:
$$ N(\xi,\eta) = \left[ \begin{array}{cccccc} 1 -\xi -\eta & 0 & \xi & 0 & \eta & 0 \\ 0 & 1 -\xi -\eta & 0 & \xi & 0 & \eta \\ \end{array} \right] $$
I wanna get a 4x6 matrix
$$ Q= \left[ \begin{array}{cc} \frac{\partial }{\partial \xi } & 0 \\ \frac{\partial }{\partial \eta } & 0 \\ 0 & \frac{\partial }{\partial \xi } \\ 0 & \frac{\partial }{\partial \eta } \\ \end{array} \right] N(\xi, \eta) $$
I tried
NSHAPE = {{1 - ξ - η, 0, ξ, 0, η, 0}, {0, 1 - ξ - η, 0, ξ, 0, η}};
Q = Map[D[#1, #2] &, {NSHAPE, {ξ, η}}]
but it doesn't give the expected result.
NSHAPEin valid Mathematica code. – xzczd Oct 20 '22 at 13:18matN[e_, n_] := { {1 - e - n, 0, e, 0, n, 0}, {0, 1 - e - n, 0, e, 0, n} };
matD = { {D[#, e] &, 0}, {D[#, n] &, 0}, {0, D[#, e] &}, {0, D[#, n] &} };
matD . matN[e, n] // MatrixForm ```
– IntroductionToProbability Oct 20 '22 at 13:22NSHAPEfor you. Do remember complete code sample is almost always necessary for an on-topic question in this site. – xzczd Oct 20 '22 at 14:42