1

I did this:

points = {{-5, 0}, {-4.8, 3}, {-4.5, 1}, {-4.2, 1}, {-4, 
    3.5}, {-3.8, 0}, {-3.5, 6}, {-3.1, 0}, {-3, -5.5}, {-2.8, 
    0}, {-2.5, 6}, {-2.1, 0}, {-1.8, -2.5}, {-1.5, 0}, {-1.2, 
    5}, {-0.8, 0}, {-0.5, -8}, {-0.2, 0}, {0, 18}, {1/2, 
    0}, {2/3, -8}, {1, 0}, {4/3, 4}, {3/2, 0}, {1.6, -4}, {2, 
    3}, {2.5, -3}, {3, 3}, {3.2, -2}, {3.5, 2}, {3.8, -4}, {4.2, 
    0}, {4.5, 6}, {4.8, -5}, {5, 0.1}};

Formed a piecewise function:

f[t_] = draupnerfun[t_] := 
  Piecewise[
   Table[{points[[i, 2]], points[[i, 1]] > t}, {i, 
     Length[points]}], 0]
p0 = Plot[draupnerfun[t], {t, -5, 5}]

and did a Fourier transform:

dft2 = FourierTransform[draupnerfun[t], t, k];
Plot[Evaluate[Re[dft2]], {k, -4, 4}]

and got this

enter image description here

which means the Fourier transformed converged.

The Fourier transform issued by this command is:

enter image description here

However, when I tried to do this by using the Definition:

Integrate[f[t]/E^(I (k t)), {k, -Infinity, Infinity}]

I got:

"Integral of E^(-I k t) Null does not converge on {-[Infinity],[Infinity]}."

Then I did this on the interval [-5,5]:

Integrate[f[t]/E^(I (k t)), {k, -5, 5}]

and got:

2 Null Sin[5 t])/t

So what is:

FourierTransform[draupnerfun[t], t, k];

if it is not the integral in the definition or in the bounded domain?

Thanks

Vangsnes
  • 591
  • 2
  • 9

0 Answers0