If I type something like this into Mathematica:
(*start*)
Clear[s, A, B, n, z, k];
n = 19;
Reduce[rho == s + 1/n + 1/(1 - A/B) &&
s + 1/n + 1/(1 - A/B) == Conjugate[-s - 1/n + 1/(1 - B/A)] &&
B != 0, Re[rho]]
(*end*)
Output:
((Im[rho] < Im[s] &&
Re[rho] == 1/
2 && (Re[B] < 0 || (Re[B] == 0 && (Im[B] < 0 || Im[B] > 0)) ||
Re[B] > 0)) || (Im[rho] ==
Im[s] && ((Re[s] < 17/38 &&
Re[rho] == 1/
2 && (Re[B] <
0 || (Re[B] == 0 && (Im[B] < 0 || Im[B] > 0)) ||
Re[B] > 0)) || (Re[s] > 17/38 &&
Re[rho] == 1/
2 && (Re[B] <
0 || (Re[B] == 0 && (Im[B] < 0 || Im[B] > 0)) ||
Re[B] > 0)))) || (Im[rho] > Im[s] &&
Re[rho] == 1/
2 && (Re[B] < 0 || (Re[B] == 0 && (Im[B] < 0 || Im[B] > 0)) ||
Re[B] > 0))) &&
A == (-20 B + 19 B rho - 19 B s)/(-1 + 19 rho - 19 s)
Is the resulting output equivalent to the statements in the program or is it a oneway implication or a mix of both? I am not strong in logic, and any hints are welcome.


Reduce[expr,vars]always describes exactly the same mathematical set asexpr." – Mats Granvik Feb 14 '23 at 13:06