I completely reworked my answer in resounse to a comment.
Both a Solve and a Reduce version are given. No commentary this time though.
solution = Reduce[x == (1/3)*(2 + y - Sqrt[1 + y + y^2]) &&
y == -((-2 + Sqrt[4 + 3*(-1 + \[Delta])^2*\[Delta]*(-2 + (-1 + x)^2*\[Delta])])/(3*(-1 + \[Delta])^2)) &&
0 < y < \[Delta] < x < 1, {x, y}, Reals, Cubics -> True, Quartics -> True] /. And -> List;
upperLimit = N[solution[[1,5]]]
0.3591039032327827
x = Function[\[Delta], Evaluate[solution[[2,2]]]]
Function[\[Delta], Root[7 - 4*\[Delta] + 2*\[Delta]^2 + (-48 + 40*\[Delta] - 18*\[Delta]^2)*#1 +
(110 - 124*\[Delta] + 53*\[Delta]^2)*#1^2 + (-96 + 144*\[Delta] - 60*\[Delta]^2)*#1^3 +
(27 - 54*\[Delta] + 23*\[Delta]^2)*#1^4 & , 1]]
In[5]:=
y = Function[\[Delta], Evaluate[solution[[3,2]]]]
Out[5]=
Function[\[Delta], 2/(3*(-1 + \[Delta])^2) - (1/(3*(-1 + \[Delta])^2))*
Sqrt[4 + 3*(-1 + \[Delta])^2*\[Delta]*
(-2 + \[Delta]*(-1 + Function[\[Delta], Root[7 - 4*\[Delta] + 2*\[Delta]^2 + (-48 + 40*\[Delta] - 18*\[Delta]^2)*#1 +
(110 - 124*\[Delta] + 53*\[Delta]^2)*#1^2 + (-96 + 144*\[Delta] - 60*\[Delta]^2)*#1^3 + (27 - 54*\[Delta] +
23*\[Delta]^2)*#1^4 & , 1]])^2)]]
ParametricPlot[{x[\[Delta]], y[\[Delta]]}, {\[Delta], 2.^(-50), upperLimit}, PlotRange -> All, AspectRatio -> 1]

ClearAll[x]; ClearAll[y]
solution = First[{x, y} /. Solve[x == (1/3)*(2 + y - Sqrt[1 + y + y^2]) &&
y == -((-2 + Sqrt[4 + 3*(-1 + \[Delta])^2*\[Delta]*(-2 + (-1 + x)^2*\[Delta])])/(3*(-1 + \[Delta])^2)) &&
0 < y < \[Delta] < x < 1, {x, y}, Reals, Cubics -> True, Quartics -> True]];
upperLimit = N[solution[[1, 2, 5]]]
0.3591039032327827
upperLimit == N[solution[[2,2,5]]]
True
x=\[Delta]|->Evaluate[solution[[1,1]]]
Function[\[Delta], (1/3)*(2 + Root[36*\[Delta]^2 - 8*\[Delta]^3 + (-144*\[Delta] + 16*\[Delta]^2 + 4*\[Delta]^3)*#1 +
(144 + 108*\[Delta] - 236*\[Delta]^2 + 124*\[Delta]^3 - 11*\[Delta]^4)*#1^2 +
(-216 + 432*\[Delta] - 194*\[Delta]^2 - 12*\[Delta]^3 + 6*\[Delta]^4)*#1^3 +
(81 - 324*\[Delta] + 474*\[Delta]^2 - 300*\[Delta]^3 + 69*\[Delta]^4)*#1^4 & , 1] -
Sqrt[1 + Root[36*\[Delta]^2 - 8*\[Delta]^3 + (-144*\[Delta] + 16*\[Delta]^2 + 4*\[Delta]^3)*#1 +
(144 + 108*\[Delta] - 236*\[Delta]^2 + 124*\[Delta]^3 - 11*\[Delta]^4)*#1^2 +
(-216 + 432*\[Delta] - 194*\[Delta]^2 - 12*\[Delta]^3 + 6*\[Delta]^4)*#1^3 +
(81 - 324*\[Delta] + 474*\[Delta]^2 - 300*\[Delta]^3 + 69*\[Delta]^4)*#1^4 & , 1] +
Root[36*\[Delta]^2 - 8*\[Delta]^3 + (-144*\[Delta] + 16*\[Delta]^2 + 4*\[Delta]^3)*#1 +
(144 + 108*\[Delta] - 236*\[Delta]^2 + 124*\[Delta]^3 - 11*\[Delta]^4)*#1^2 +
(-216 + 432*\[Delta] - 194*\[Delta]^2 - 12*\[Delta]^3 + 6*\[Delta]^4)*#1^3 +
(81 - 324*\[Delta] + 474*\[Delta]^2 - 300*\[Delta]^3 + 69*\[Delta]^4)*#1^4 & , 1]^2])]
y = Function[\[Delta], Evaluate[solution[[2,1]]]]
Function[\[Delta], Root[36*\[Delta]^2 - 8*\[Delta]^3 + (-144*\[Delta] + 16*\[Delta]^2 + 4*\[Delta]^3)*#1 +
(144 + 108*\[Delta] - 236*\[Delta]^2 + 124*\[Delta]^3 - 11*\[Delta]^4)*#1^2 +
(-216 + 432*\[Delta] - 194*\[Delta]^2 - 12*\[Delta]^3 + 6*\[Delta]^4)*#1^3 +
(81 - 324*\[Delta] + 474*\[Delta]^2 - 300*\[Delta]^3 + 69*\[Delta]^4)*#1^4 & , 1]]
ParametricPlot[{x[\[Delta]], y[\[Delta]]}, {\[Delta], 2.^(-50), upperLimit}, PlotRange -> All, AspectRatio -> 1]

The original answer so that you can see what I got wrong and right.
- Avail the solution as a pure function with δ as a free variable:
solution = Evaluate[First[{x, y} /. Solve[x == (1/3)*(2 + y - Sqrt[1 + y + y^2]) &&
y == -((-2 + Sqrt[4 + 3*(-1 + \[Delta])^2*\[Delta]*(-2 + (-1 + x)^2*\[Delta])])/(3*(-1 + \[Delta])^2)) && 0 < y < \[Delta] < x < 1,
{x, y}, Reals, MaxExtraConditions -> All, Cubics -> True, Quartics -> True]]] & ;
- Make the solution into two argument function:
expression = Function[{\[Delta], parameter}, Append[solution[parameter], \[Delta]]]
3.Plot the three-dimensional function:

Here are a few suggestions:
How to copy and pastable code into into this site.
Common pitfalls with Mathematica
0 < y < \[Delta] < x < 1is unclear to me. The commandEliminate[ x == 1/3 (2 + y - Sqrt[1 + y + y^2]) && y == -((-2 + Sqrt[4 + 3 (-1 + \[Delta])^2 \[Delta] (-2 + (-1 + x)^2 \[Delta])])/(3 (-1 + \[Delta])^2)), \[Delta]]results in(-1 + 2 x) y == 1 - 4 x + 3 x^2. – user64494 Mar 31 '23 at 09:10Eliminate[ x == 1/3 (2 + y - Sqrt[1 + y + y^2]) && y == -((-2 + Sqrt[4 + 3 (-1 + \[Delta])^2 \[Delta] (-2 + (-1 + x)^2 \[Delta])])/(3 (-1 + \[Delta])^2)), y]results in – user64494 Mar 31 '23 at 09:14x^3 (84 + 12/(1 - \[Delta]) - 60 \[Delta]) + x (22 + 26/(1 - \[Delta]) - 18 \[Delta]) + x^4 (-31 + 4/(1 - \[Delta]) + 23 \[Delta]) + x^2 (-71 - 39/(1 - \[Delta]) + 53 \[Delta]) == 2 + 5/(1 - \[Delta]) - 2 \[Delta] && x^3 (-96 + 144 \[Delta] - 60 \[Delta]^2) + x (-48 + 40 \[Delta] - 18 \[Delta]^2) + x^4 (27 - 54 \[Delta] + 23 \[Delta]^2) + x^2 (110 - 124 \[Delta] + 53 \[Delta]^2) == -7 + 4 \[Delta] - 2 \[Delta]^2 && -1 + \[Delta] != 0. – user64494 Mar 31 '23 at 09:14