I do opine that the question did not eschew obsfuscation.
- Graphics3D[RegionProduct[Rectangle[{1, 2}], Line[{{0}, {13}}]],pretty]

- Graphics3D[GeometricTransformation[Cuboid[{1,2,0},{2,3,13}],{{{316/325,-(12/325),3/13},{-(12/325),309/325,4/13},{-(3/13),-(4/13),12/13}},{0,0,0}}],
pretty]

- Or, something quite complex as a rectangle twisting around its path along a cinquefoil knot

Now, how was that done?
pretty = Sequence @@ {ImageSize -> Medium, Axes -> True,
AxesLabel -> (Style[Indexed[X, #1], Large, Bold, Red] & ) /@
Range[3]};
rainbow = ColorData["Rainbow", "ColorFunction"];
rectangle = Polygon[Rationalize[MeshCoordinates[
MeshPrimitives[RegionProduct[Point[{0}], Rectangle[{-1, -(1/2)},
{1, 1/2}]], 2][[1]]]]]
knot = Function[{a, b, leaves, twists},
Evaluate[Function[\[Theta], {(a + b*Cos[leaves*\[Theta]])*Cos[twists*\[Theta]],
(a + b*Cos[leaves*\[Theta]])*Sin[twists*\[Theta]], (-b)*Sin[leaves*\[Theta]]}]]];
path = knot[10, 5, 5, 2]
Graphics3D[({rainbow[1 - #1/(2*Pi)], Point[path[#1]]} & ) /@
Range[0, 2*Pi, Pi/720], pretty]
t = Function[\[Theta], Evaluate[D[path[\[Theta]], \[Theta]]]]
n = Function[\[Theta], Evaluate[D[t[\[Theta]], \[Theta]]]]
b = Function[\[Theta], Evaluate[Cross[t[\[Theta]], n[\[Theta]]]]]
tnb = {Red, Line[{{0, 0, 0}, {1, 0, 0}}], Green,
Line[{{0, 0, 0}, {0, 1, 0}}], Blue, Line[{{0, 0, 0}, {0, 0, 1}}]};
affine = Function[\[Theta], AffineTransform[
{Transpose[Normalize @* N /@ {t[\[Theta]], n[\[Theta]], b[\[Theta]]}], N[path[\[Theta]]]}]]
Graphics3D[{(GeometricTransformation[tnb, affine[#1]] & ) /@
Range[0, 2*Pi, Pi/60]}, pretty, ViewPoint -> Front,
ViewVertical -> {0, 0, 1}]
put = affine[#1] . RotationTransform[#1/2, {1, 0, 0}] &
Graphics3D[(GeometricTransformation[rectangle, put[#1]] & ) /@
Range[0, 2*Pi, Pi/120], pretty, ViewPoint -> Front,
ViewVertical -> {0, 0, 1}]
coordinates = MeshCoordinates[rectangle]
tube = Block[{work},
work = Rationalize[ParallelMap[put[Pi*#1][coordinates] & ,
Range[0, 2, 1/500]], 2^(-40)]; work = Transpose[work];
Transpose[Append[work, work[[1]]]]];
mesh = Flatten[ParallelTable[{Polygon[{tube[[i,j]], tube[[i + 1,j]],
tube[[i + 1,j + 1]]}], Polygon[
{{tube[[i,j]], tube[[i + 1,j + 1]], tube[[i,j + 1]]}}]},
{i, Length[tube] - 1}, {j, Length[tube[[i]]] - 1}]];
Graphics3D[{EdgeForm[None], mesh}, pretty]



