The distance from a moving point in the plane to (0,0) is lambda times the distance from (a, 0). And lambda is not equal to 1. Find the equation
The standard equation form for a circle is:
(x - a)^2 + (y - b)^2 == r^2
The center coordinate of the circle is:{a,b} The radius is:r
Therefore, the equation form obtained according to the requirements is as follows:
y^2 + (x - (a λ^2)/(-1 + λ^2))^2 == (
a^2 λ^2)/(-1 + λ^2)^2
Clear["Global`*"]
expr = EuclideanDistance[{0, 0}, {x,
y}] == λ EuclideanDistance[{a, 0}, {x, y}]
eqn = Assuming[Element[{x, y, a, λ}, Reals], Simplify[expr]]
ApplySides[#^2 &, eqn]
eq = ApplySides[#^2 &, eqn] // Simplify
CompleteTheSquare::notquad =
"The expression is not quadratic in the variables `1`";
CompleteTheSquare[expr_] := CompleteTheSquare[expr, Variables[expr]]
CompleteTheSquare[expr_, Vars_Symbol] :=
CompleteTheSquare[expr, {Vars}]
CompleteTheSquare[expr_, Vars : {__Symbol}] :=
Module[{array, A, B, C, s, vars, sVars},
vars = Intersection[Vars, Variables[expr]];
Check[array = CoefficientArrays[expr, vars], Return[expr],
CoefficientArrays::poly];
If[Length[array] != 3, Message[CompleteTheSquare::notquad, vars];
Return[expr]];
{C, B, A} = array; A = Symmetrize[A];
s = Simplify[1/2 Inverse[A] . B, Trig -> False];
sVars = Hold /@ (vars + s); A = Map[Hold, A, {2}];
Expand[A . sVars . sVars] + Simplify[C - s . A . s, Trig -> False] //
ReleaseHold]
Apply[Subtract, eq]
CompleteTheSquare[%, {x, y}]
ApplySides[#/Coefficient[%, y^2] &, % == 0]
CompleteTheSquare[% /. Equal -> Subtract, {x, y}] == 0
Fold[SubtractSides, %, Select[List @@ First@%, FreeQ[x | y]]]


Apply[Subtract]@Map[#^2 &]@eqn == d ((x - aa)^2 + (y - b)^2 - c)], {aa, b, c, d}][[1]]```This solution is cleverly used– csn899 Apr 22 '23 at 00:12ClearAll["`*"] rule = Solve[ ForAll[{x, y}, 3 x^2 + 6 x + 7 y^2 + 9 y + 88 == dd (x - aa)^2 + ee (y - bb)^2 + cc], {aa, bb, cc, dd, ee}][[1]] dd (x - aa)^2 + ee (y - bb)^2 + cc /. ruleCan this method also be used to perform a complete squared formula on polynomials? – csn899 Apr 22 '23 at 00:17