I have a document in .bib format, namelad by savedrecs1.bib, obtained from Web of Science. The document have a set of reference, of the type:
@article{ WOS:000315745900009,
Author = {Bini, Daniel and dos Santos, Cristiane Alcantara and Bouillet,
Jean-Pierre and de Morais Goncalves, Jose Leonardo and Bran Nogueira
Cardoso, Elke Jurandy},
Title = {Eucalyptus grandis and Acacia mangium in monoculture and intercropped
plantations: Evolution of soil and litter microbial and chemical
attributes during early stages of plant development},
Journal = {APPLIED SOIL ECOLOGY},
Year = {2013},
Volume = {63},
Pages = {57-66},
Month = {JAN},
Abstract = {Soil microorganisms and microbial processes are influenced by the
quality and quantity of plant waste entering the soil, by its seasonal
and spatial distribution, by the ratio of above- to below-ground inputs,
and by changes in nutrient inputs. Soil management strategies sometimes
promote mixed-species plantations to mitigate the loss of soil nutrients
and improve biogeochemical cycling. The objective of this study was to
explore changes in microbiological and chemical attributes of soils and
litter in the early stages of the second rotation of mixed and pure
plantations of Eucalyptus grandis and Acacia mangium, and to look for
correlations between attributes. Soil samples at 0-10 cm depth were
collected two, seven, 14, and 20 months after planting in the following
treatments: monocultures of A. mangium and E. grandis, a monoculture of
E. grandis with N-fertilizer, and an intercropped plantation with E.
grandis and A. mangium. Microbial soil attributes varied dramatically
between treatments 20 months after planting. Total C, N and P contents
in litter showed the strongest correlations with microbial biomass C and
N (C-mic and N-mic), microbial respiration, and dehydrogenase activity
in all sampling periods. Lower C/N and C/P ratios in litter and lower
C/N and C-mic/tC ratios in soils after 20 months in the intercropped
plantation illustrated the system's capacity for supplying inputs of
high-quality organic matter rich in N and P, but this did not result in
higher contents of these elements or greater microbial activity in
soils. An implication of this finding is that, at least in the initial
growth phase of these plantations, chemical attributes of the litter and
variation in those attributes govern microbial processes and,
consequently, are mostly responsible for plant development. Canonical
discriminant analysis revealed changes in the microbiological and
chemical attributes of soil in the intercropped plantation due to the
plants growth and the leaf litter accumulation. Twenty months after
planting, the different plantations could be discriminated by
differences in litter chemistry (C, N, and P), total soil C, N-mic, and
dehydrogenase activity, which were very similar in intercropped
plantations and E. grandis with N-fertilizer. These results from the
early stages of plantation development are important for understanding
the dynamics of soil attributes in these systems, and especially in
intercropped plantations. In intercropped areas the cumulative effect of
microbial attributes reflects a more sustainable system. Long-term
studies are needed to identify patterns that develop after 20 months,
during the growth period of these plantations. (C) 2012 Elsevier B.V.
All rights reserved.},
Publisher = {ELSEVIER},
Address = {RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS},
Type = {Article},
Language = {English},
Affiliation = {Bini, D (Corresponding Author), Univ Sao Paulo, Luiz de Queiroz Coll Agr, Ave Padua Dias,11,Cx Postal 9, BR-13418900 Piracicaba, SP, Brazil.
Bini, Daniel; dos Santos, Cristiane Alcantara; Bran Nogueira Cardoso, Elke Jurandy, Univ Sao Paulo, ESALQ, Dept Ciencia Solo, BR-13418900 Piracicaba, SP, Brazil.
Bouillet, Jean-Pierre; de Morais Goncalves, Jose Leonardo, Univ Sao Paulo, ESALQ, Dept Ciencias Florestais, BR-13418900 Piracicaba, SP, Brazil.
Bouillet, Jean-Pierre, SupAgro CIRAD INRA IRD, CIRAD, UMR Ecol Fonct \& Biogeochim Sols \& Agroecosyst, F-34060 Montpellier, France.},
DOI = {10.1016/j.apsoil.2012.09.012},
ISSN = {0929-1393},
EISSN = {1873-0272},
Keywords = {Microbial biomass; Forestry; Mixed-species; Legumes; Litter},
Keywords-Plus = {MIXED-SPECIES PLANTATIONS; ENZYME-ACTIVITIES; GROWTH DYNAMICS; BIOMASS
CARBON; ORGANIC-CARBON; NITROGEN; DECOMPOSITION; FOREST; GLOBULUS;
FERTILIZATION},
Research-Areas = {Agriculture},
Web-of-Science-Categories = {Soil Science},
Author-Email = {dani\_bini@yahoo.com.br},
Affiliations = {Universidade de Sao Paulo; Universidade de Sao Paulo; CIRAD; INRAE;
Institut Agro; Montpellier SupAgro},
ResearcherID-Numbers = {Bini, Daniel/E-8231-2013
Bouillet, Jean-Pierre/E-6929-2014
Cardoso, Elke JBN/E-5039-2013
Moraes Goncalves, Jose Leonardo/G-4979-2013},
ORCID-Numbers = {Bini, Daniel/0000-0002-0127-0788
Moraes Goncalves, Jose Leonardo/0000-0003-1068-5448},
Funding-Acknowledgement = {FAPESP {[}2009/17525-6, 2010/16623-9]; ANR (Agence Nationale de la
Recherche) {[}2010-STRA-004]; USP/COFECUB project {[}22193PA]; CNPq;
Cardoso {[}307563/2009-0, 140893/2011-3]},
Funding-Text = {We thank to FAPESP (Project no 2009/17525-6 and no 2010/16623-9), to ANR
(Agence Nationale de la Recherche - 2010-STRA-004), to ATP Neucapalm
(CIRAD) and to the USP/COFECUB project (no 22193PA) for funding this
project. Thanks are also due to the staff of the Itatinga Forest
Sciences Experimental Station and of the Laboratory of Soil Microbiology
at the Luiz de Queiroz College of Agriculture for their assistance in
conducting the experiments. We thank CNPq for providing research a
productivity fellowship to E.J.B.N. Cardoso (No. 307563/2009-0) and for
granting a doctoral scholarship to D.Bini (No. 140893/2011-3).},
Cited-References = {Alef K., 1995, METHODS APPL SOIL MI, P214.
Allison SD, 2006, SOIL BIOL BIOCHEM, V38, P1537, DOI 10.1016/j.soilbio.2005.11.008.
ANDERSON TH, 1989, SOIL BIOL BIOCHEM, V21, P471, DOI 10.1016/0038-0717(89)90117-X.
Araujo ASF, 2010, LAND DEGRAD DEV, V21, P540, DOI 10.1002/ldr.993.
BARETTA Dilmar, 2010, Acta Zool. Mex, V26, P135.
Barlow J, 2007, FOREST ECOL MANAG, V247, P91, DOI 10.1016/j.foreco.2007.04.017.
Bastida F, 2006, SOIL BIOL BIOCHEM, V38, P3463, DOI 10.1016/j.soilbio.2006.06.001.
BINKLEY D, 1992, FOREST SCI, V38, P393.
Barreto PAB, 2008, REV BRAS CIENC SOLO, V32, P611, DOI 10.1590/S0100-06832008000200016.
Bonanomi G, 2010, PLANT SOIL, V331, P481, DOI 10.1007/s11104-009-0269-6.
Bouillet JP, 2008, FOREST ECOL MANAG, V255, P3918, DOI 10.1016/j.foreco.2007.10.050.
Bremner JM, 1982, AGRONOMY, V9, P595, DOI DOI 10.2134/AGR0NM0N0GR9.2.2ED.C31.
CASIDA L. E., 1964, SOIL SCI, V98, P371, DOI 10.1097/00010694-196412000-00004.
Chabrerie O, 2003, APPL SOIL ECOL, V24, P43, DOI 10.1016/S0929-1393(03)00062-3.
Chaer GM, 2007, REV BRAS CIENC SOLO, V31, P1381, DOI 10.1590/S0100-06832007000600016.
Coelho SRD, 2007, PESQUI AGROPECU BRAS, V42, P759, DOI 10.1590/S0100-204X2007000600001.
de Varennes A, 2011, SOIL USE MANAGE, V27, P18, DOI 10.1111/j.1475-2743.2010.00307.x.
Dick Warren A., 1993, P95.
Fierer N, 2003, SOIL BIOL BIOCHEM, V35, P167, DOI 10.1016/S0038-0717(02)00251-1.
Forrester DI, 2005, CAN J FOREST RES, V35, P2942, DOI 10.1139/X05-214.
Forrester DI, 2005, FOREST ECOL MANAG, V209, P147, DOI 10.1016/j.foreco.2005.01.012.
Forrester DI, 2004, FOREST ECOL MANAG, V193, P81, DOI 10.1016/j.foreco.2004.01.024.
Garcia C, 2005, GEODERMA, V124, P193, DOI 10.1016/j.geoderma.2004.04.013.
Geisseler D, 2011, PEDOBIOLOGIA, V54, P71, DOI 10.1016/j.pedobi.2010.10.001.
Goncalves J. L. M., 1997, Management of soil, nutrients and water in tropical plantation forests., P379.
INSAM H, 1990, SOIL BIOL BIOCHEM, V22, P525, DOI 10.1016/0038-0717(90)90189-7.
Isaac ME, 2011, FOREST ECOL MANAG, V261, P582, DOI 10.1016/j.foreco.2010.11.011.
Jourdan C, 2008, FOREST ECOL MANAG, V256, P396, DOI 10.1016/j.foreco.2008.04.034.
Kaschuk G, 2010, SOIL BIOL BIOCHEM, V42, P1, DOI 10.1016/j.soilbio.2009.08.020.
Khanna PK, 1997, AGROFOREST SYST, V38, P99, DOI 10.1023/A:1005952410569.
Khanna PK, 1997, FOREST ECOL MANAG, V94, P105, DOI 10.1016/S0378-1127(96)03971-0.
Knorr M, 2005, ECOLOGY, V86, P3252, DOI 10.1890/05-0150.
Laclau JP, 2008, FOREST ECOL MANAG, V255, P3905, DOI 10.1016/j.foreco.2007.10.049.
Madritch MD, 2003, OECOLOGIA, V136, P124, DOI 10.1007/s00442-003-1253-0.
May BM, 2003, FOREST ECOL MANAG, V181, P339, DOI 10.1016/S0378-1127(03)00006-9.
McGradySteed J, 1997, NATURE, V390, P162, DOI 10.1038/36561.
Mendes PF, 2010, WATER AIR SOIL POLL, V208, P79, DOI 10.1007/s11270-009-0150-5.
MURPHY J, 1962, ANAL CHIM ACTA, V26, P31.
Nogueira MA, 2006, AGR ECOSYST ENVIRON, V115, P237, DOI 10.1016/j.agee.2006.01.008.
Parrotta JA, 1999, FOREST ECOL MANAG, V124, P45, DOI 10.1016/S0378-1127(99)00049-3.
Prescott CE, 2010, BIOGEOCHEMISTRY, V101, P133, DOI 10.1007/s10533-010-9439-0.
Raij B., 2001, ANALISE QUIMICA AVAL.
Roscoe R., 2006, DINAMICA MAT ORGANIC, P163.
Sanborn PT, 2009, CAN J FOREST RES, V39, P2257, DOI 10.1139/X09-122.
Sinha S, 2009, SOIL BIOL BIOCHEM, V41, P1824, DOI 10.1016/j.soilbio.2008.11.022.
Tilman D, 2001, SCIENCE, V294, P843, DOI 10.1126/science.1060391.
Traore S, 2007, APPL SOIL ECOL, V35, P660, DOI 10.1016/j.apsoil.2006.09.004.
Vance CP, 2003, NEW PHYTOL, V157, P423, DOI 10.1046/j.1469-8137.2003.00695.x.
VANCE ED, 1987, SOIL BIOL BIOCHEM, V19, P703, DOI 10.1016/0038-0717(87)90052-6.
Voigtlaender M, 2012, PLANT SOIL, V352, P99, DOI 10.1007/s11104-011-0982-9.
Wang CY, 2010, ECOL RES, V25, P1121, DOI 10.1007/s11284-010-0737-8.
Wang QK, 2008, APPL SOIL ECOL, V40, P484, DOI 10.1016/j.apsoil.2008.07.003.
WARDLE DA, 1992, BIOL REV, V67, P321, DOI 10.1111/j.1469-185X.1992.tb00728.x.
Wedderburn ME, 1999, SOIL BIOL BIOCHEM, V31, P455, DOI 10.1016/S0038-0717(98)00151-5.
Xie DY, 2002, PLANT CELL REP, V20, P917, DOI 10.1007/s00299-001-0397-9.
Xiong YM, 2008, PLANT SOIL, V304, P179, DOI 10.1007/s11104-007-9536-6.
Yamashita N, 2008, FOREST ECOL MANAG, V254, P362, DOI 10.1016/j.foreco.2007.08.012.
Zhang WD, 2012, SOIL BIOL BIOCHEM, V47, P116, DOI 10.1016/j.soilbio.2011.12.004.
Zhao J, 2011, SOIL BIOL BIOCHEM, V43, P954, DOI 10.1016/j.soilbio.2011.01.010.},
Number-of-Cited-References = {59},
Times-Cited = {58},
Usage-Count-Last-180-days = {5},
Usage-Count-Since-2013 = {90},
Journal-ISO = {Appl. Soil Ecol.},
Doc-Delivery-Number = {100ZZ},
Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)},
Unique-ID = {WOS:000315745900009},
DA = {2023-05-11},
}
@article{ WOS:000468188300047,
Author = {Congio, Guilhermo F. S. and Chiavegato, Marilia B. and Batalha, Camila
D. A. and Oliveira, Patricia P. A. and Maxwell, Thomas M. R. and
Gregorini, Pablo and Da Silva, Sila C.},
Title = {Strategic grazing management and nitrous oxide fluxes from pasture soils
in tropical dairy systems},
Journal = {SCIENCE OF THE TOTAL ENVIRONMENT},
Year = {2019},
Volume = {676},
Pages = {493-500},
Month = {AUG 1},
Abstract = {Greenhouse gases emissions are considered one of the most important
environmental issues of dairy farming systems. Nitrous oxide (N2O) has
particular importance owing to its global warming potential and
stratospheric ozone depletion. The objective of this study was to
investigate the influence of two rotational grazing strategies
characterized by two pre-grazing targets (95% and maximum canopy light
interception: LI95% and LIMax, respectively) on milk production
efficiency and N2O fluxes from soil in a tropical dairy farming system
based on elephant grass (Pennisetum purpureum Schum. cv. Cameroon).
Results indicated that LI95% pre-grazing target provided more frequent
defoliations than LIMax.Water-filled pore space, soil and chamber
temperatures were affected by sampling periods (P-1 and P-2). There was
a significant pre-grazing target treatment x sampling period interaction
effect on soil NH4+ concentration, which was most likely associated with
urinary-N discharge. During P-1, there was a greater urinary-N discharge
for LI95% than LIMax (26.3 vs. 20.9 kg of urinary-N/paddock) caused by
higher stocking rate, which resulted in greater N2O fluxes for LI95%.
Inversely, during P-2, the soil NH4+ and N2O fluxes were greater for
LIMax than LI95%. During this period, the greater urinary-N discharge
(46.8 vs. 44.8 kg of urinary-N/paddock) was likely associated with
longer stocking period for LIMax relative to LI95%, since both
treatments had similar stocking rate. Converting hourly N2O fluxes to
daily basis and relating to milk production efficiency, LI95% was 40%
more efficient than LIMax (0.34 vs. 0.57 g N-N2O/kg milk .ha). In
addition, LI(95% )pre-grazing target decreased urea-N loading per milk
production by 34%. Strategic grazing management represented by the
LI95% pre-grazing target allows for intensification of tropical
pasture-based dairy systems, enhanced milk production efficiency and
decreased N-N2O emission intensity. (C) 2019 Elsevier B.V. All rights
reserved.},
Publisher = {ELSEVIER SCIENCE BV},
Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
Type = {Article},
Language = {English},
Affiliation = {Congio, GFS (Corresponding Author), Univ Sao Paulo, Anim Sci Dept, Luiz de Queiroz Coll Agr USP ESALQ, Piracicaba, SP, Brazil.
Congio, Guilhermo F. S.; Chiavegato, Marilia B.; Batalha, Camila D. A.; Da Silva, Sila C., Univ Sao Paulo, Anim Sci Dept, Luiz de Queiroz Coll Agr USP ESALQ, Piracicaba, SP, Brazil.
Oliveira, Patricia P. A., Embrapa Pecuaria Sudeste, Sao Carlos, SP, Brazil.
Maxwell, Thomas M. R.; Gregorini, Pablo, Lincoln Univ, Fac Agr & Life Sci, Christchurch, New Zealand.},
DOI = {10.1016/j.scitotenv.2019.04.186},
ISSN = {0048-9697},
EISSN = {1879-1026},
Keywords = {Canopy light interception; Nitrous oxide fluxes; Grazed soils; Soil
nitrogen; Sustainable intensification; Elephant grass},
Keywords-Plus = {MAXIMUM CV-MOMBACA; CATTLE URINE; HERBAGE ACCUMULATION; ROTATIONAL
STOCKING; ELEPHANT GRASS; ENVIRONMENTAL-IMPACT; MILK-PRODUCTION; N2O
EMISSIONS; BOVINE URINE; INTENSITY},
Research-Areas = {Environmental Sciences & Ecology},
Web-of-Science-Categories = {Environmental Sciences},
Author-Email = {guilhermo.congio@usp.br
marilia.chiavegato@usp.br
camila.delveaux@usp.br
patricia.anchao-oliveira@embrapa.br
tom.maxwell@lincoln.ac.nz
pablo.gregorini@lincoln.ac.nz
siladasilva@usp.br},
Affiliations = {Universidade de Sao Paulo; Empresa Brasileira de Pesquisa Agropecuaria
(EMBRAPA); Lincoln University - New Zealand},
ResearcherID-Numbers = {Congio, Guilhermo F. S./D-8307-2015
Oliveira, Patrícia/L-1909-2017
Da Silva, Sila C/B-8158-2012
Batalha, Camila Delveaux Araujo/AAG-5927-2020
Maxwell, Thomas/V-2036-2018
},
ORCID-Numbers = {Congio, Guilhermo F. S./0000-0002-7659-594X
Oliveira, Patrícia/0000-0003-4665-3755
Da Silva, Sila C/0000-0001-9104-3353
Batalha, Camila Delveaux Araujo/0000-0002-0303-3962
Maxwell, Thomas/0000-0001-9204-1667},
Funding-Acknowledgement = {Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
{[}2014/20182-9, 2016/22040-2]; Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq) {[}140074/2017-1]; Coordenacao de
Aperfeicoamento de Pessoal de Nivel Superior, Brazil (CAPES) {[}001]},
Funding-Text = {The authors are grateful to Fundacao de Amparo a Pesquisa do Estado de
Sao Paulo (FAPESP; grants 2014/20182-9 and 2016/22040-2) for financial
support and scholarship, to Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq, grant 140074/2017-1) and Coordenacao de
Aperfeicoamento de Pessoal de Nivel Superior, Brazil (CAPES, finance
code 001) for scholarships, and Carlos Eduardo Jordao for his help with
gas chromatograph analysis. We also acknowledge the valuable suggestions
from reviewers.},
Cited-References = {Aguirre-Villegas HA, 2017, J DAIRY SCI, V100, P6804, DOI 10.3168/jds.2016-12325.
Alexandratos N, 2012, WORLD AGR 2030 2050, DOI 10.22004/ag.econ.288998.
Alves BJR, 2012, SOIL BIOL BIOCHEM, V46, P129, DOI 10.1016/j.soilbio.2011.11.022.
{[}Anonymous], 2011, LOOKING AHEAD WORLD.
{[}Anonymous], 2018, BRAZ SYST SOIL CLASS.
Auerswald K, 2010, NUTR CYCL AGROECOSYS, V88, P275, DOI 10.1007/s10705-009-9321-4.
Bardgett RD, 2001, SOIL BIOL BIOCHEM, V33, P1653, DOI 10.1016/S0038-0717(01)00086-4.
Bardgett RD, 2003, ECOLOGY, V84, P2258, DOI 10.1890/02-0274.
Bardgett RD, 1996, BIOL FERT SOILS, V22, P261, DOI 10.1007/BF00382522.
Barneze AS, 2015, CHEMOSPHERE, V119, P122, DOI 10.1016/j.chemosphere.2014.06.002.
Barneze AS, 2014, ATMOS ENVIRON, V92, P394, DOI 10.1016/j.atmosenv.2014.04.046.
Bolan NS, 2004, ADV AGRON, V84, P37, DOI 10.1016/S0065-2113(04)84002-1.
Carnevalli RA, 2006, TROP GRASSLANDS, V40, P165.
CEPAGRI - Centro de Pesquisas Meteorologicas e Climaticas Aplicadas a Agricultura, 2012, CTR PESQ MET CLIM AP.
Chapman DF, 2016, AGRICULTURE-BASEL, V6, DOI 10.3390/agriculture6020017.
Chiavegato MB, 2015, J ANIM SCI, V93, P1350, DOI 10.2527/jas.2014-8134.
Clough TJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-02278-y.
Congio GFS, 2018, SCI TOTAL ENVIRON, V636, P872, DOI 10.1016/j.scitotenv.2018.04.301.
da Silva AP, 2003, SOIL TILL RES, V70, P83, DOI 10.1016/S0167-1987(02)00122-8.
Da Silva SC, 2017, J AGR SCI-CAMBRIDGE, V155, P1082, DOI 10.1017/S0021859617000223.
da Silva SC, 2015, AGRICULTURE-BASEL, V5, P598, DOI 10.3390/agriculture5030598.
da Silva SC, 2009, SCI AGR, V66, P8, DOI 10.1590/S0103-90162009000100002.
DAVIDSON EA, 1992, SOIL SCI SOC AM J, V56, P95, DOI 10.2136/sssaj1992.03615995005600010015x.
Gimenes FMD, 2011, PESQUI AGROPECU BRAS, V46, P751, DOI 10.1590/S0100-204X2011000700011.
Carvalho PCD, 2013, TROP GRASSL-FORRAJES, V1, P137, DOI 10.17138/TGFT(1)137-155.
De Klein C., 2015, NITROUS OXIDE CHAMBE, P146.
de Klein CAM, 2008, AUST J EXP AGR, V48, P14, DOI 10.1071/EA07217.
de Klein CAM, 2008, ENVIRONMENTAL IMPACTS OF PASTURE-BASED FARMING, P1, DOI 10.1079/9781845934118.0001.
de Klein CAM, 2014, AGR ECOSYST ENVIRON, V188, P85, DOI 10.1016/j.agee.2014.02.020.
Di HJ, 2016, J SOIL SEDIMENT, V16, P2252, DOI 10.1007/s11368-016-1442-1.
Di HJ, 2016, J SOIL SEDIMENT, V16, P1401, DOI 10.1007/s11368-016-1403-8.
Flechard CR, 2007, AGR ECOSYST ENVIRON, V121, P135, DOI 10.1016/j.agee.2006.12.024.
Flint A.L., 2002, METHODS SOIL ANAL 4, V4, P229, DOI DOI 10.2136/SSSABOOKSER5.4.C10.
Fonseca L, 2012, LIVEST SCI, V145, P205, DOI 10.1016/j.livsci.2012.02.003.
Gardiner CA, 2016, NEW ZEAL J AGR RES, V59, P301, DOI 10.1080/00288233.2016.1190386.
Gardiner CA, 2018, NEW ZEAL J AGR RES, V61, P495, DOI 10.1080/00288233.2017.1411953.
Gregorini P, 2016, SCI TOTAL ENVIRON, V551, P32, DOI 10.1016/j.scitotenv.2016.01.203.
Grossman R. B., 2002, METHODS SOIL ANAL 4, P201.
Guerci M, 2013, J CLEAN PROD, V54, P133, DOI 10.1016/j.jclepro.2013.04.035.
Jolliffe I, 2002, PRINCIPAL COMPONENT, P518.
Lessa ACR, 2014, AGR ECOSYST ENVIRON, V190, P104, DOI 10.1016/j.agee.2014.01.010.
Levine UY, 2011, ISME J, V5, P1683, DOI 10.1038/ismej.2011.40.
Luo J, 2018, SCI TOTAL ENVIRON, V610, P1271, DOI 10.1016/j.scitotenv.2017.08.186.
Luo JF, 2017, ADV AGRON, V145, P205, DOI 10.1016/bs.agron.2017.05.006.
Macdonald KA, 2017, J DAIRY SCI, V100, P6602, DOI 10.3168/jds.2016-12497.
Mazzetto AM, 2015, NUTR CYCL AGROECOSYS, V101, P83, DOI 10.1007/s10705-014-9663-4.
Mazzetto AM, 2014, SOIL BIOL BIOCHEM, V76, P242, DOI 10.1016/j.soilbio.2014.05.026.
O'Brien D, 2012, AGR SYST, V107, P33, DOI 10.1016/j.agsy.2011.11.004.
OECD, 2017, OECD ENV PERFORMANCE, DOI {[}DOI 10.1787/9789264268203-EN, 10.1787/9789264268203-en].
Parsons A, 2011, GRASSLAND PRODUCTIVITY AND ECOSYSTEM SERVICES, P3, DOI 10.1079/9781845938093.0003.
Pereira LET, 2015, GRASS FORAGE SCI, V70, P195, DOI 10.1111/gfs.12103.
Pereira LET, 2014, J AGR SCI-CAMBRIDGE, V152, P954, DOI 10.1017/S0021859613000695.
Rafique R, 2011, ECOSYSTEMS, V14, P563, DOI 10.1007/s10021-011-9434-x.
Ramsbottom G, 2015, J DAIRY SCI, V98, P3526, DOI 10.3168/jds.2014-8516.
Rex D, 2018, NUTR CYCL AGROECOSYS, V110, P135, DOI 10.1007/s10705-017-9901-7.
Saggar S, 2013, SCI TOTAL ENVIRON, V465, P173, DOI 10.1016/j.scitotenv.2012.11.050.
Samad MDS, 2016, SCI REP-UK, V6, DOI 10.1038/srep35990.
Santos FP, 2014, 25 S NUTR S GAIN FL, p144?65.
Sbrissia AF, 2018, CROP SCI, V58, P945, DOI 10.2135/cropsci2017.07.0447.
Schmalz HJ, 2013, RANGELAND ECOL MANAG, V66, P445, DOI 10.2111/REM-D-12-00040.1.
Selbie D., 2013, FATE NITROGEN ANIMAL.
Selbie DR, 2015, ADV AGRON, V129, P229, DOI 10.1016/bs.agron.2014.09.004.
Smith P, 2001, NUTR CYCL AGROECOSYS, V60, P237, DOI 10.1023/A:1012617517839.
da Silveira MCT, 2013, SCI AGR, V70, P242, DOI 10.1590/S0103-90162013000400004.
Trindade Júlio Kuhn da, 2007, Pesq. agropec. bras., V42, P883, DOI 10.1590/S0100-204X2007000600016.
van der Weerden TJ, 2017, NEW ZEAL J AGR RES, V60, P119, DOI 10.1080/00288233.2016.1273838.
Venterea RT, 2015, SCI REP-UK, V5, DOI 10.1038/srep12153.
Venterea RT, 2010, J ENVIRON QUAL, V39, P126, DOI 10.2134/jeq2009.0231.
Vibart RE, 2017, J DAIRY SCI, V100, P5305, DOI 10.3168/jds.2016-12413.
Voltolini TV, 2010, REV BRAS ZOOTECN, V39, P121, DOI 10.1590/S1516-35982010000100016.
WARREN SD, 1986, J RANGE MANAGE, V39, P491, DOI 10.2307/3898755.
White SL, 2001, J ENVIRON QUAL, V30, P2180, DOI 10.2134/jeq2001.2180.
Wrage N, 2001, SOIL BIOL BIOCHEM, V33, P1723, DOI 10.1016/S0038-0717(01)00096-7.
2010, SCIENCE, V327, P812, DOI DOI 10.1126/SCIENCE.1185383.},
Number-of-Cited-References = {74},
Times-Cited = {13},
Usage-Count-Last-180-days = {2},
Usage-Count-Since-2013 = {29},
Journal-ISO = {Sci. Total Environ.},
Doc-Delivery-Number = {HY5SP},
Web-of-Science-Index = {Science Citation Index Expanded (SCI-EXPANDED)},
Unique-ID = {WOS:000468188300047},
DA = {2023-05-11},
}
My objective is to import the document to then export the same document in csv format. To import the document, I used
Import["C:\\Users\\User\\Downloads\\savedrecs1.bib"]
However, the following message appear
Please, anybody help me to import .bib and export it in .csv?
Thank you in advance.


