I used Roman's method (under derivation) from this post.
f[x_] = x*Sqrt[1 - x^2] + ArcSin[x]
Series[f[x], {x, 0, 10}]
(* x - x^3/3 - x^5/20...*)
note that all terms are of the form $x^{1+2n}$ with integer . We can get the series coefficients and find a fitting function:
Table[{n, SeriesCoefficient[f[x], {x, 0, 2 n + 1}]}, {n, 0, 10}]
(*{{0, 2}, {1, -(1/3)}, {2, -(1/20)}, {3, -(1/56)}, {4, -(5/
576)}, {5, -(7/1408)}, {6, -(21/6656)}, {7, -(11/5120)}, {8, -(429/
278528)}, {9, -(715/622592)}, {10, -(2431/2752512)}}*)
FindSequenceFunction[%, n]
((2 Pochhammer[-(1/2), n])/((-1 + 2 (1 + n)) Pochhammer[1, n]))
Then, note that:
Sum[(2 Pochhammer[a, n])/(Pochhammer[1, n] + 2 n Pochhammer[1, n])*
x^(1 + 2 n), {n, 0, \[Infinity]}]
(*2 x Hypergeometric2F1[1/2, a, 3/2, x^2]*)
so with a = -1/2 in our case we get x*Sqrt[1 - x^2] + ArcSin[x] = 2 x Hypergeometric2F1[1/2, -1/2, 3/2, x^2]