Consider the following region:
Vol2 = Parallelepiped[{-4.8, -4,
15}, {{9.6, 0, 0}, {0, 8, 0}, {0, 0, 4}}];
Vol1 = Parallelepiped[{-0.3, -0.25,
15}, {{0.6, 0, 0}, {0, 0.5, 0}, {0, 0, 4}}];
Vol = RegionDifference[Vol2, Vol1];
Its visualization is imperfect:
Region[Style[Vol, Blue, Opacity[0.2], EdgeForm[{Thick, Blue}]]]
Could you please tell me how to get a smooth visualization?
P.S. The method from the question does not work:
Vol // BoundaryDiscretizeRegion // Region`Mesh`MergeCells
BoundaryMeshRegion::bsuncl: The boundary surface is not closed because the edges Line[{{11,14},{21,24},{10,1},{14,7},{24,23},{19,17},{20,19},{13,10},{7,4},{23,22},<<6>>}] only come from a single face.





DiscretizeRegion[vol, MaxCellMeasure -> "Volume" -> 1]? – Michael E2 Jul 05 '23 at 22:45Graphics3D[{EdgeForm[None], vol}, Boxed -> False]? – Michael E2 Jul 05 '23 at 22:55reg = RegionBoundary[Vol] // DiscretizeRegion; Graphics3D[{FaceForm[ Directive[Opacity[.2], Blue]], EdgeForm[Thick], reg // Region\Mesh`MergeCells}, Boxed -> False]` – cvgmt Jul 06 '23 at 01:05