The code (1.) finds eigenvalues and eigenfunctions of the system $H=-\frac{1}{2}\Delta-\frac{1}{\sqrt{\rho^2+z^2}}$ using NDEigensystem, where $\frac{1}{\sqrt{\rho^2+z^2}}$ is a Coulomb potential written in a cylindrical system.
in the code I renamed $\rho≡r$
1)
ClearAll["Global`*"]
rmax = 20;
zmax = 20;
{valsc, funsc} =
NDEigensystem[{(-1/2*
Laplacian[ψ[r, z], {r, θ, z}, "Cylindrical"] -
1/(Sqrt[r^2 + z^2])ψ[r, z]) + ψ[r, z]0.5}, ψ[
r, z], {r, 0, rmax}, {z, -zmax, zmax}, 20,
Method -> {"SpatialDiscretization" -> {"FiniteElement",
{"MeshOptions" -> {"MaxCellMeasure" -> 0.05}}},
"Eigensystem" -> {"Arnoldi", "MaxIterations" -> 10000}}];
Sort[valsc] - 0.5
({-0.503427, -0.125434, -0.125001, -0.0591382, -0.0575661,
-0.0567415, -0.0366165, -0.0348045, -0.0331543, -0.0305338,
-0.0194174, -0.011569, -0.00383252, -0.000633831, 0.0115625,
0.0130426, 0.0228641, 0.0287679, 0.0380814, 0.0405388})
Why, if I enter the angle θ into the function ψ, then the code (2.) does not work correctly?
2)
ClearAll["Global`*"]
rmax = 20;
zmax = 20;
{valsr, funsr} =
NDEigensystem[{(-1/2*
Laplacian[ψ[r, θ, z], {r, θ, z},
"Cylindrical"] -
1/(Sqrt[r^2 + z^2])ψ[r, θ, z]) + ψ[
r, θ, z]0.5}, ψ[r, θ, z], {r, 0,
rmax}, {θ, 0, 2*Pi}, {z, -zmax, zmax}, 100,
Method -> {"SpatialDiscretization" -> {"FiniteElement",
{"MeshOptions" -> {"MaxCellMeasure" -> 0.05}}},
"Eigensystem" -> {"Arnoldi", "MaxIterations" -> 10000}}];
Sort[valsr] - 0.5
{valsr, funsr} = NDEigensystem[{(-1/2* Laplacian[\[Psi][r, \[Theta], z], {r, \[Theta], z}, "Cylindrical"] - 1/(Sqrt[r^2 + z^2])*\[Psi][r, \[Theta], z]) + \[Psi][r, \[Theta], z]*0.5, PeriodicBoundaryCondition[\[Psi][r, \[Theta], z], \[Theta] == 2 \[Pi], Function[\[Theta], \[Theta] - 2 \[Pi]]]}, \[Psi][r, \[Theta], z], {r, 0, rmax}, {\[Theta], 0, 2*Pi}, {z, -zmax, zmax}, 10, Method -> {"SpatialDiscretization" -> {"FiniteElement", {"MeshOptions" -> {"MaxCellMeasure" -> 0.05}}}, "Eigensystem" -> {"Arnoldi", "MaxIterations" -> 10000}}];– Mam Mam Jul 12 '23 at 10:12