I have a series of matrices exemplify as
\begin{align} Atmp=\left( \begin{array}{cccccccc} 0. & 0. & 1.\, +0.5 e^{-i z} & 0. & 1. y+0.2 & 0.\, +0.75 i & 0. & 0. \\ 0. & 0. & 0. & -1.-0.5 e^{-i z} & 0.\, +0.75 i & 1. y-0.2 & 0. & 0. \\ 1.\, +0.5 e^{i z} & 0. & 0. & 0. & 0. & 0. & 0.2\, -1. y & 0.\, -0.75 i \\ 0. & -1.-0.5 e^{i z} & 0. & 0. & 0. & 0. & 0.\, -0.75 i & -1. y-0.2 \\ 1. y+0.2 & 0.\, -0.75 i & 0. & 0. & 0. & 0. & 1.\, +0.5 e^{-i z} & 0. \\ 0.\, -0.75 i & 1. y-0.2 & 0. & 0. & 0. & 0. & 0. & -1.-0.5 e^{-i z} \\ 0. & 0. & 0.2\, -1. y & 0.\, +0.75 i & 1.\, +0.5 e^{i z} & 0. & 0. & 0. \\ 0. & 0. & 0.\, +0.75 i & -1. y-0.2 & 0. & -1.-0.5 e^{i z} & 0. & 0. \\ \end{array} \right) \end{align}
which can be added to the Mathematica using
Atmp = {{0., 0., 1. + 0.5 E^(-I z), 0., 0.2 + 1. y, 0. + 0.75 I, 0.,
0.}, {0., 0., 0., -1. - 0.5 E^(-I z), 0. + 0.75 I, -0.2 + 1. y,
0., 0.}, {1. + 0.5 E^(I z), 0., 0., 0., 0., 0., 0.2 - 1. y,
0. - 0.75 I}, {0., -1. - 0.5 E^(I z), 0., 0., 0., 0.,
0. - 0.75 I, -0.2 - 1. y}, {0.2 + 1. y, 0. - 0.75 I, 0., 0., 0.,
0., 1. + 0.5 E^(-I z), 0.}, {0. - 0.75 I, -0.2 + 1. y, 0., 0., 0.,
0., 0., -1. - 0.5 E^(-I z)}, {0., 0., 0.2 - 1. y, 0. + 0.75 I,
1. + 0.5 E^(I z), 0., 0., 0.}, {0., 0., 0. + 0.75 I, -0.2 - 1. y,
0., -1. - 0.5 E^(I z), 0., 0.}};
Here is the plot of all eigenvalues.
. The figure can be generated using
L=30;
r1 = Table[{y, z,
Re[Sort[Chop[Eigenvalues[Atmp]]][[1]]]}, {y, -\[Pi], \[Pi],
Pi/L}, {z, -Pi + 0.01, Pi, Pi/L}];
r2 = Table[{y, z,
Re[Sort[Chop[Eigenvalues[Atmp]]][[2]]]}, {y, -\[Pi], \[Pi],
Pi/L}, {z, -Pi + 0.01, Pi, Pi/L}];
r3 = Table[{y, z,
Re[Sort[Chop[Eigenvalues[Atmp]]][[3]]]}, {y, -\[Pi], \[Pi],
Pi/L}, {z, -Pi + 0.01, Pi, Pi/L}];
r4 = Table[{y, z,
Re[Sort[Chop[Eigenvalues[Atmp]]][[4]]]}, {y, -\[Pi], \[Pi],
Pi/L}, {z, -Pi + 0.01, Pi, Pi/L}];
r5 = Table[{y, z,
Re[Sort[Chop[Eigenvalues[Atmp]]][[5]]]}, {y, -\[Pi], \[Pi],
Pi/L}, {z, -Pi + 0.01, Pi, Pi/L}];
r6 = Table[{y, z,
Re[Sort[Chop[Eigenvalues[Atmp]]][[6]]]}, {y, -\[Pi], \[Pi],
Pi/L}, {z, -Pi + 0.01, Pi, Pi/L}];
r7 = Table[{y, z,
Re[Sort[Chop[Eigenvalues[Atmp]]][[7]]]}, {y, -\[Pi], \[Pi],
Pi/L}, {z, -Pi + 0.01, Pi, Pi/L}];
r8 = Table[{y, z,
Re[Sort[Chop[Eigenvalues[Atmp]]][[8]]]}, {y, -\[Pi], \[Pi],
Pi/L}, {z, -Pi + 0.01, Pi, Pi/L}];
g1 = ListPlot3D[Flatten[r1, 1],
PlotStyle -> Directive[blue, Opacity[0.65]], Mesh -> False,
PlotRange -> All];
g2 = ListPlot3D[Flatten[r2, 1],
PlotStyle -> Directive[orange, Opacity[0.65]], Mesh -> False,
PlotRange -> All];
g3 = ListPlot3D[Flatten[r3, 1],
PlotStyle -> Directive[Red, Opacity[0.65]], Mesh -> False,
PlotRange -> All];
g4 = ListPlot3D[Flatten[r4, 1],
PlotStyle -> Directive[Green, Opacity[0.65]], Mesh -> False,
PlotRange -> All];
g5 = ListPlot3D[Flatten[r5, 1],
PlotStyle -> Directive[Yellow, Opacity[0.65]], Mesh -> False,
PlotRange -> All];
g6 = ListPlot3D[Flatten[r6, 1],
PlotStyle -> Directive[Black, Opacity[0.65]], Mesh -> False,
PlotRange -> All];
g7 = ListPlot3D[Flatten[r7, 1],
PlotStyle -> Directive[Gray, Opacity[0.65]], Mesh -> False,
PlotRange -> All];
g8 = ListPlot3D[Flatten[r8, 1],
PlotStyle -> Directive[Magenta, Opacity[0.65]], Mesh -> False,
PlotRange -> All];
ticks = {{-[Pi], "-[Pi]"}, {-[Pi]/2, "-[Pi]/2"}, {0,
"0"}, {[Pi]/2, "[Pi]/2"}, {[Pi], "[Pi]"}};
Plothermitain =
Show[g1, g2, g3, g4, g5, g6, g7, g8, PlotRange -> All,
AspectRatio -> 1, BaseStyle -> {FontFamily -> "Times", 20},
Frame -> True, Ticks -> {ticks, ticks, Automatic},
AxesLabel -> {"y", "z", "E"}, ImageSize -> 250,
ImagePadding -> All]
In the $y-z$ plane, eigenvalues of my matrices exhibit some regions where two of the eigenvalues become zero and degenerate. My question is how to obtain the region numerically and plot it in the 2D y-z plane. Previously, some suggestions for obtaining these results when the symbolic equations of eigenvalues are given. However, here I don't have access to any symbolic expression.



det = Numerator[Det[Rationalize[Atmp]] // FullSimplify] reSol = Reduce[{Re@det == 0, y \[Element] Reals, z \[Element] Reals}, {y, z}] RegionPlot@ ImplicitRegion[reSol, {{y, -\[Pi], \[Pi]}, {z, -\[Pi], \[Pi]}}]but it didn't work. – Shasa Jul 27 '23 at 14:42