0

I want to get a compact form of the eigenvalues of this matrix

Eigenvalues[({
   {-r,  p1, 0, 0},
   {p1, -r, 1, 0},
   {0, 1, r,  p2},
   {0, 0, p2, r}
  })]   

this is the output

{Root[p1^2 p2^2 + r^2 - p1^2 r^2 - p2^2 r^2 + 
    r^4 + (2 p1^2 r - 2 p2^2 r) #1 + (-1 - p1^2 - p2^2 - 
       2 r^2) #1^2 + #1^4 &, 1], 
 Root[p1^2 p2^2 + r^2 - p1^2 r^2 - p2^2 r^2 + 
    r^4 + (2 p1^2 r - 2 p2^2 r) #1 + (-1 - p1^2 - p2^2 - 
       2 r^2) #1^2 + #1^4 &, 2], 
 Root[p1^2 p2^2 + r^2 - p1^2 r^2 - p2^2 r^2 + 
    r^4 + (2 p1^2 r - 2 p2^2 r) #1 + (-1 - p1^2 - p2^2 - 
       2 r^2) #1^2 + #1^4 &, 3], 
 Root[p1^2 p2^2 + r^2 - p1^2 r^2 - p2^2 r^2 + 
    r^4 + (2 p1^2 r - 2 p2^2 r) #1 + (-1 - p1^2 - p2^2 - 
       2 r^2) #1^2 + #1^4 &, 4]}

How can I understand this output and what is #1?

is it possible to simplify and get a compact form knowing that all elements of the matrix are real?

MMA13
  • 4,664
  • 3
  • 15
  • 21
  • 1
    See https://mathematica.stackexchange.com/questions/13767/how-do-i-work-with-root-objects – Michael E2 Aug 05 '23 at 21:26
  • 3
    Maybe Eigenvalues[({{-r, p1, 0, 0}, {p1, -r, 1, 0}, {0, 1, r, p2}, {0, 0, p2, r}}), Quartics -> True]? (or apply ToRadicals to your output) – Michael E2 Aug 05 '23 at 21:27
  • 1
    Replace #1 by x: It says, that the eigenvalues are the four roots of the characteristic polynomial in x l $$p1^2 p2^2 + r^2 - p1^2 r^2 - p2^2 r^2 + r^4 + (2 p1^2 r - 2 p2^2 r) x + (-1 - p1^2 - p2^2 - 2 r^2) x^2 + x^4==0$$. It makes little sense to reproduce the formula for general coefficients. – Roland F Aug 06 '23 at 06:05
  • @RolandF, I see what #1 means. Thanks, man! – MMA13 Aug 06 '23 at 07:34

0 Answers0