I want to get a compact form of the eigenvalues of this matrix
Eigenvalues[({
{-r, p1, 0, 0},
{p1, -r, 1, 0},
{0, 1, r, p2},
{0, 0, p2, r}
})]
this is the output
{Root[p1^2 p2^2 + r^2 - p1^2 r^2 - p2^2 r^2 +
r^4 + (2 p1^2 r - 2 p2^2 r) #1 + (-1 - p1^2 - p2^2 -
2 r^2) #1^2 + #1^4 &, 1],
Root[p1^2 p2^2 + r^2 - p1^2 r^2 - p2^2 r^2 +
r^4 + (2 p1^2 r - 2 p2^2 r) #1 + (-1 - p1^2 - p2^2 -
2 r^2) #1^2 + #1^4 &, 2],
Root[p1^2 p2^2 + r^2 - p1^2 r^2 - p2^2 r^2 +
r^4 + (2 p1^2 r - 2 p2^2 r) #1 + (-1 - p1^2 - p2^2 -
2 r^2) #1^2 + #1^4 &, 3],
Root[p1^2 p2^2 + r^2 - p1^2 r^2 - p2^2 r^2 +
r^4 + (2 p1^2 r - 2 p2^2 r) #1 + (-1 - p1^2 - p2^2 -
2 r^2) #1^2 + #1^4 &, 4]}
How can I understand this output and what is #1?
is it possible to simplify and get a compact form knowing that all elements of the matrix are real?
Eigenvalues[({{-r, p1, 0, 0}, {p1, -r, 1, 0}, {0, 1, r, p2}, {0, 0, p2, r}}), Quartics -> True]? (or applyToRadicalsto your output) – Michael E2 Aug 05 '23 at 21:27