I am plotting a function using DensityPlot for two different values of a parameter. I am setting the PlotLegends option to Automatic. The output I get gives me two density plots; one of whose ranges goes from 0.05 to 0.20 and the second one ranges from -0.25 to 0.75.
However, in the final output I want a DensityPlot whose range goes from -0.5 to 1 so that the color for both plots is synchronized. I would really appreciate if someone could let me know how to do this. Here is the code I am using.
Clear[f, g, h, p, r, l, jac, u1, u2, u3, u4, G, x, y, z, sol, xinit, yinit, zinit, plotfunc0, plotfunc1, A, r1, r2]
r = 0.1;
r2 = 0.9;
G = {{15, 15, 15, 6}, {10, 10, 10, 1}, {10, 10, 10, 1}, {16, 16, 16,
7}};
u1[A_, De_] =
G[[1, 1]](1 - A)(1 - De) + G[[1, 2]](1 - A)De +
G[[1, 3]]A(1 - De) + G[[1, 4]]ADe ;
u2[A_, De_] =
G[[2, 1]](1 - A)(1 - De) + G[[2, 2]](1 - A)De +
G[[2, 3]]A(1 - De) + G[[2, 4]]ADe ;
u3[A_, De_] =
G[[3, 1]](1 - A)(1 - De) + G[[3, 2]](1 - A)De +
G[[3, 3]]A(1 - De) + G[[3, 4]]ADe ;
u4[A_, De_] =
G[[4, 1]](1 - A)(1 - De) + G[[4, 2]](1 - A)De +
G[[4, 3]]A(1 - De) + G[[4, 4]]ADe ;
ualpha[A_,
De_] = ((1 - A)(1 - De)u1[A, De]) + ((1 - A)De
u2[A, De]) + (A(1 - De)u3[A, De]) + (ADeu4[A, De]);
us[A_, De_] = ((1 - A)(1 - De)u1[A, De]) + ((1 - A)De u2[A, De]);
ua[A_, De_] = (A(1 - De)u3[A, De]) + (ADeu4[A, De]);
uc[A_, De_] = ((1 - A)(1 - De)u1[A, De]) + (A(1 - De)u3[A, De]);
ud[A_, De_] = ((1 - A)De u2[A, De]) + (ADe u4[A, De]);
F1[A_, De_] = ((1 - r)(1 - A)(1 - De)u1[A, De]/ualpha[A, De]) + (r
us[A, De]uc[A, De]/((ualpha[A, De])^2)) - ((1 - A)(1 - De));
F2[A_, De_] = ((1 - r)(1 - A)Deu2[A, De]/ualpha[A, De]) + (r
us[A, De]ud[A, De]/((ualpha[A, De])^2)) - ((1 - A)De);
F3[A_, De_] = ((1 - r)A(1 - De)u3[A, De]/ualpha[A, De]) + (r
ua[A, De]uc[A, De]/((ualpha[A, De])^2)) - (A(1 - De));
scG[A_, De_] = F1[A, De]/((1 - A)(1 - De));
adG[A_, De_] = ( -F1[A, De] - F2[A, De] - F3[A, De])/(ADe);
netG[A_, De_] = -scG[A, De] + adG[A, De];
G1[A_, De_] = ((1 - r2)(1 - A)(1 - De)*
u1[A, De]/ualpha[A, De]) + (r2us[A, De]
uc[A, De]/((ualpha[A, De])^2)) - ((1 - A)(1 - De));
G2[A_, De_] = ((1 - r2)(1 - A)Deu2[A, De]/ualpha[A, De]) + (r2*
us[A, De]ud[A, De]/((ualpha[A, De])^2)) - ((1 - A)De);
G3[A_, De_] = ((1 - r2)A(1 - De)u3[A, De]/ualpha[A, De]) + (r2
ua[A, De]uc[A, De]/((ualpha[A, De])^2)) - (A(1 - De));
scG2[A_, De_] = G1[A, De]/((1 - A)(1 - De));
adG2[A_, De_] = ( -G1[A, De] - G2[A, De] - G3[A, De])/(ADe);
netG2[A_, De_] = -scG2[A, De] + adG2[A, De];
DensityPlot[netG[A, DE], {A, 0, 1}, {DE, 0, 1},
PlotLegends -> Automatic,
FrameTicksStyle -> Directive[FontSize -> 14]]
DensityPlot[netG2[A, DE], {A, 0, 1}, {DE, 0, 1},
PlotLegends -> Automatic,
FrameTicksStyle -> Directive[FontSize -> 14]]


