I am tring to selec two points A, B on the sphere (x-2)^2 + (y-4)^2 + (z-6)^2 ==9^2 so that EuclideanDistance[pA,pB] is an integer and coordinates of two point A, B are integer numbers.
I know that, with distance AB= 12, I tried
ClearAll[a, b, r, c];
{a, b, c} = {2, 4, 6};
r = 9; ss =
Subsets[{x, y, z} /.
Solve[{(x \[Minus] a)^2 + (y \[Minus] b)^2 + (z \[Minus] c)^2 ==
r^2, x y z != 0}, {x, y, z}, Integers], {2}];
mydistance = Select[ss, EuclideanDistance[#[[1]], #[[2]]] == 12 &];
Select[mydistance, (6 == Length[Union @@ #] &)]
{{{-7, 4, 6}, {1, -4, 2}}, {{-7, 4, 6}, {1, -4, 10}}, {{-7, 4, 6}, {1, 8, -2}}, {{-7, 4, 6}, {1, 8, 14}}, {{-7, 4, 6}, {1, 12, 2}}, {{-7, 4, 6}, {1, 12, 10}}, {{-6, 3, 2}, {-2, 11, 10}}, {{-6, 3, 10}, {-2, 11, 2}}, {{-6, 3, 10}, {2, -5, 6}}, {{-6, 5, 2}, {-2, -3, 10}}, {{-6, 5, 10}, {-2, -3, 2}}, {{-6, 5, 10}, {2, 13, 6}}, {{-6, 8, 5}, {2, 4, -3}}, {{-6, 8, 7}, {2, 4, 15}}, {{-5, 8, 2}, {3, 12, 10}}, {{-5, 8, 10}, {3, 12, 2}}, {{-2, -4, 5}, {2, 4, -3}}, {{-2, -4, 7}, {2, 4, 15}}, {{-2, -3, 10}, {6, 5, 14}}, {{-2, 3, 14}, {2, -5, 6}}, {{-2, 3, 14}, {6, 11, 10}}, {{-2, 5, 14}, {2, 13, 6}}, {{-2, 5, 14}, {6, -3, 10}}, {{-2, 8, -1}, {6, 12, 7}}, {{-2, 8, 13}, {6, 12, 5}}, {{-2, 11, 10}, {6, 3, 14}}, {{-2, 12, 5}, {2, 4, -3}}, {{-2, 12, 5}, {6, 8, 13}}, {{-2, 12, 7}, {2, 4, 15}}, {{-2, 12, 7}, {6, 8, -1}}, {{1, 12, 2}, {9, 8, 10}}, {{1, 12, 10}, {9, 8, 2}}, {{2, 4, -3}, {6, -4, 5}}, {{2, 4, -3}, {6, 12, 5}}, {{2, 4, -3}, {10, 8, 5}}, {{2, 4, 15}, {6, -4, 7}}, {{2, 4, 15}, {6, 12, 7}}, {{2, 4, 15}, {10, 8, 7}}, {{3, -4, 2}, {11, 4, 6}}, {{3, -4, 10}, {11, 4, 6}}, {{3, 8, -2}, {11, 4, 6}}, {{3, 8, 14}, {11, 4, 6}}, {{3, 12, 2}, {11, 4, 6}}, {{3, 12, 10}, {11, 4, 6}}}
I want to find all integert numbers that EuclideanDistance[pA, pB] == k. I tried
ClearAll[a, b, r, c];
{a, b, c} = {2, 4, 6};
r = 9; ss =
Subsets[{x, y, z} /.
Solve[{(x \[Minus] a)^2 + (y \[Minus] b)^2 + (z \[Minus] c)^2 ==
r^2, x y z != 0}, {x, y, z}, Integers], {2}];
Table[{pA, pB} = points;
Solve[{EuclideanDistance[pA, pB] == k, 1 <= k <= 2 r}, k, Integers],
{points, ss}]
{{}, {}, {}, {}, {}, {}, {{k -> 6}}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {{k -> 12}}, {{k -> 12}}, {{k -> 12}}, {{k -> 12}}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {{k -> 8}}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {{k -> 6}}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {{k -> 16}}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {{k -> 6}}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {{k -> 16}}, {{k -> 18}}, {}, {}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {{k -> 12}}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {{k -> 16}}, {}, {}, {}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {{k -> 16}}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {{k -> 14}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 14}}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{{k -> 12}}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{{k -> 12}}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{{k -> 18}}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {{k -> 14}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 8}}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 14}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k
-> 8}}, {}, {}, {}, {{k -> 12}}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {{k -> 16}}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {{k -> 8}}, {}, {}, {{k -> 18}}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k
-> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {{k -> 8}}, {{k -> 18}}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {{k -> 18}}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {{k -> 18}}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {{k -> 14}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {{k -> 8}}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {{k -> 12}}, {}, {}, {}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 8}}, {}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {{k -> 2}}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {{k -> 2}}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 2}}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 2}}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {{k -> 18}}, {{k -> 6}}, {}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {{k -> 6}}, {}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {{k -> 6}}, {{k -> 12}}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {{k -> 12}}, {{k -> 12}}, {}, {}, {}, {}, {}, {{k -> 18}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{{k -> 12}}, {{k -> 12}}, {}, {}, {{k -> 6}}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {{k -> 12}}, {}, {}, {}, {{k -> 8}}, {}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {{k -> 12}}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{{k -> 8}}, {}, {}, {}, {}, {}, {}, {{k -> 14}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k
-> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 14}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {{k -> 16}}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {{k -> 6}}, {}, {}, {}, {{k -> 16}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k
-> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {{k -> 14}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{{k -> 12}}, {}, {}, {}, {}, {}, {}, {{k -> 2}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {{k -> 6}}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 12}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {},
{}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {}, {}, {}, {}, {}, {}, {{k -> 6}}, {{k -> 8}}, {{k -> 2}}, {}, {}, {}, {}, {}, {{k -> 2}}, {}, {}, {}, {{k -> 8}}, {}, {}, {}, {}, {}, {}, {{k -> 2}}, {}, {}}
From this out put, I see that, $k \in \{2, 6, 8, 12, 14, 16, 18\}$. How to get a nice Ouput?

DeleteDuplicates? – David G. Stork Aug 28 '23 at 01:48