$Version
(* "13.3.1 for Mac OS X ARM (64-bit) (July 24, 2023)" *)
Clear["Global`*"]
Assuming that B represents the Euler beta function
(sum[n_, x_] = Inactive[Sum][1/Beta[x + i, i], {i, 1, n}]) //
TraditionalForm

This sum is
(sum[n_, x_] = sum[n, x] // Activate // FullSimplify) //
TraditionalForm

The infinite sum diverges; however, it can be Borel regularized
(sumReg[x_] = Sum[1/Beta[x + i, i], {i, 1, ∞},
Regularization -> "Borel"]) // TraditionalForm

EDIT: As noted by Roman, sumReg[x] can be simplified
(sumReg[x_] = sumReg[x] // FullSimplify) //
TraditionalForm

This function has odd symmetry
sumReg[-x] == -sumReg[x] // FullSimplify
(* True *)
Plot[sumReg[x], {x, 0, 10 π},
Frame -> True,
FrameLabel -> (Style[#, 14] & /@ {x, sumReg})]

B. Also note thatNis a reserved symbol in Mathematica. Thanks. – Syed Sep 15 '23 at 09:03