I try to calculate the Einstein tensor compenents from the eqution:
$ G_{\alpha\beta} = \frac{\nabla_\beta (\partial_\alpha \phi)}{\phi} - \frac{1}{2\phi^2} \left[ \frac{\partial_4 \phi \partial_4 g_{\alpha\beta}}{\phi} - \partial_4 (\partial_4 g_{\alpha\beta} ) + g^{\gamma\delta} \partial_4 g_{\alpha\gamma} \partial_4 g_{\beta\delta} - \frac{g^{\gamma\delta} \partial_4 g_{\gamma\delta} \partial_4 g_{\alpha \beta}}{2}+ \frac{g_{\alpha\beta}}{4}\left( \partial_4 g^{\gamma\delta} \partial_4 g_{\gamma\delta} + ( g^{\gamma\delta} \partial_4 g_{\gamma\delta})^2 \right)\right], $
The code in the answer in this thread Calculating Einstein tensor components in Kaluza-Klein model works well in case of a sipmle metric like:
$g_{\alpha\beta} = a^2(t,y) (-1,1,1,1) $
While now I try to calculate $G_{\alpha\beta}$ in case of a perturbed metric 0209156
metric = a[t, y]^2 {{-(1 + 2 n \[CapitalPhi][t, r, \[Theta], \[Phi]]),
n D[S[t, r, \[Theta], \[Phi]], r],
n D[S[t, r, \[Theta], \[Phi]], \[Theta]],
n D[S[t, r, \[Theta], \[Phi]], \[Phi]]},
{n D[S[t, r, \[Theta], \[Phi]], r],
1 - 2 n \[CapitalPsi][t, r, \[Theta], \[Phi]] +
n D[Xi[t, r, \[Theta], \[Phi]], {r, 2}] -
1/3 n D[Xi[t, r, \[Theta], \[Phi]], {\[Theta], 2}] -
1/3 n D[Xi[t, r, \[Theta], \[Phi]], {\[Phi], 2}],
n D[D[Xi[t, r, \[Theta], \[Phi]], r], \[Theta]],
n D[D[Xi[t, r, \[Theta], \[Phi]], r], \[Phi]]},
{n D[S[t, r, \[Theta], \[Phi]], \[Theta]],
n D[D[Xi[t, r, \[Theta], \[Phi]], r], \[Theta]],
1 - 2 n \[CapitalPsi][t, r, \[Theta], \[Phi]] +
n D[Xi[t, r, \[Theta], \[Phi]], {\[Theta], 2}] -
n D[Xi[t, r, \[Theta], \[Phi]], {r, 2}] -
1/3 n D[Xi[t, r, \[Theta], \[Phi]], {\[Phi], 2}],
n D[D[Xi[t, r, \[Theta], \[Phi]], \[Theta]], \[Phi]]},
{n D[S[t, r, \[Theta], \[Phi]], \[Phi]],
n D[D[Xi[t, r, \[Theta], \[Phi]], r], \[Phi]],
n D[D[Xi[t, r, \[Theta], \[Phi]], \[Theta]], \[Phi]],
1 - 2 n \[CapitalPsi][t, r, \[Theta], \[Phi]] +
n D[Xi[t, r, \[Theta], \[Phi]], {\[Phi], 2}] -
1/3 n D[Xi[t, r, \[Theta], \[Phi]], {\[Theta], 2}] -
1/3 n D[Xi[t, r, \[Theta], \[Phi]], {r, 2}]}};
Where:
coordList = {t, r, \[Theta], \[Phi]};
And n is a factor of a polynomial series and it’s of the first order {n,0,1}.
For this metric I tried to modify the last step in the answer’s code 1
ein[a_, b_] := Normal[Series[-(term1[a, b] + term2[a, b] + term3[a, b] +
Sum[term4[a, b, g, d] + term5[a, b, g, d] +
term6[a, b, g, d], {g, 4}, {d, 4}])/2/f[t, y]^2, {n,0,1}]]
But the code doesn't work for this new metric. So how to calculate $G_{\alpha\beta}$ for the metric?
xPertto generate the perturbations and substitute terms into it via rules. – Nov 17 '23 at 01:25