$Version
(* "13.3.1 for Mac OS X ARM (64-bit) (July 24, 2023)" *)
Clear["Global`*"]
Needs["StandardAtmosphere`"]
data = Table[{alt, MeanFreePath[alt Quantity[1, "Kilometers"]][[1]]},
{alt, 0, 110, 0.5}];
Fit the log of the data
Exp[(nlm2 =
NonlinearModelFit[{#[[1]], Log[#[[2]]]} & /@ data, a*x + b, {a, b}, x]) //
Normal]
(* E^(-16.8632 + 0.147609 x) *)
Show[
ListLogPlot[data,
PlotStyle -> Blue],
LogPlot[Exp[nlm2[x]], {x, 0, 110},
PlotStyle -> Black],
Frame -> True,
FrameLabel -> {Style["Altitude (km)", 14], Style["MFP (m)", 14]}]

EDIT: Alternatively, since
A*Exp[(x - B)*C] == Exp[Log[A]]*Exp[C*x - B*C] ==
Exp[C*x - (B*C - Log[A])] // Simplify
(* True *)
The model has only two parameters. Use Exp[a*x + b]
To determine initial estimates for the NonlinearModelFit, use two widely separated data points
paramEst =
SolveValues[Exp[a*#[[1]] + b] == #[[2]] & /@ data[[{1, -1}]], {a, b}][[1]] //
Quiet
(* {0.148094, -16.5286} *)
(nlm3 = NonlinearModelFit[data, Exp[a*x + b], Transpose[{{a, b}, paramEst}],
x]) // Normal
(* E^(-17.0152 + 0.153491 x) *)
Show[ListLogPlot[data, PlotStyle -> Blue],
LogPlot[nlm3[x], {x, 0, 110}, PlotStyle -> Black], Frame -> True,
FrameLabel -> {Style["Altitude (km)", 14], Style["MFP (m)", 14]}]

LogPlotinstead ofPlot, to match theListLogPlotyou used for your data. We can't investigate further becauseMeanFreePathis not defined in your code, so we can't run it. – MarcoB Dec 02 '23 at 14:21StandardAtmospherepackage, added. – icebox207 Dec 02 '23 at 14:35alt > 100so one shouldn't extrapolate with an exponential model. (Also,MeanFreePathclearly (?) uses linear interpolation at alt = 80, 85, 86, 90, 95, 100 and many other values of alt. Again, I don't know the subject matter but that isn't mentioned in the documentation.) – JimB Dec 03 '23 at 01:52