I modified @xzczd's code and came up with the following wrapper for the inverse Laplace transform:
ilpt[(h : List | Plus | Equal)[a__], s_, t_] := ilpt[#, s, t] & /@ h[a]
ilpt[a_ b_, s_, t_] :=
Module[{w}, Convolve[ilpt[a, s, w], ilpt[b, s, w], w, t]]
ilpt[a_, s_, t_] := InverseLaplaceTransform[a, s, t]
I used the following code to test that it is working, although there may be edge cases that are not covered (I'm a computer scientist, not a mathematician, so Laplace transforms are a little outside my wheelhouse.):
ilpt[a*LaplaceTransform[f[t], t, s], s, t] // TraditionalForm
ilpt[LaplaceTransform[g[t], t, s]*b, s, t] // TraditionalForm
ilpt[1/(s + 1)*LaplaceTransform[f[t], t, s], s, t] // TraditionalForm
ilpt[LaplaceTransform[f[t], t, s]*LaplaceTransform[g[t], t, s], s,
t] // TraditionalForm
ilpt[a*LaplaceTransform[f[t], t, s]*LaplaceTransform[g[t], t, s]*b, s,
t] // TraditionalForm
with the following results:
a f(t)
b g(t)
Convolve[E^-w$331676,f(w$331676),w$331676,t]
Convolve[f(w$331922),g(w$331922),w$331922,t]
a b Convolve[f(w$331940),g(w$331940),w$331940,t]
I also made a wrapper for the forward Laplace transform that can convert convolutions back into products:
lpt[(h : List | Plus | Equal)[a__], t_, s_] := lpt[#, t, s] & /@ h[a]
lpt[a_ b_, t_, s_] /; FreeQ[b, Alternatives @@ t] := b lpt[a, t, s]
lpt[(h : Convolve)[a_, b_, w_, t_], t_, s_] :=
lpt[a, w, s]*lpt[b, w, s]
lpt[a_, t_, s_] := LaplaceTransform[a, t, s]
Below are some tests:
lpt[Convolve[1/w, g[w], w, t], t, s]
lpt[Convolve[Exp[-w], Convolve[f[u + 9], g[u], u, w], w, t], t, s]
And their results, respectively:
LaplaceTransform[1/w, w, s] LaplaceTransform[g[w], w, s]
(LaplaceTransform[f[9 + u], u, s] LaplaceTransform[g[u], u, s])/(1 + s
)
FourierTransformhere: https://mathematica.stackexchange.com/a/71393/1871 Implementing it forInverseLaplaceTransformshould be similar. – xzczd Dec 08 '23 at 02:34