I am trying to make a list of three distinct points are not collinear so that their coordinates consist of nine different numbers from 1 to 9,
{{1, 9, 8}, {5, 2, 3}, {7, 4, 6}}
I tried
tab = Table[{{a, b, c}, {x, y, z}, {m, n, t}}, {a, 9}, {b, 9}, {c,
9}, {x, 9}, {y, 9}, {z, 9}, {m, 9}, {n, 9}, {t, 9}];
SystemException["MemoryAllocationFailure"]
I tried again
tab = Table[{{a, b, c}, {x, y, z}, {m, n, t}}, {a, 3}, {b, 3}, {c, 3}, {x, 3, 6}, {y, 3, 6}, {z, 3, 6}, {m, 7, 9}, {n, 7, 9}, {t, 7, 9}];
ss = Flatten[tab, 8];
result = Pick[ss, Not@*CollinearPoints /@ ss];
list = Select[result, (9 == Length[Union @@ #] &)]
{{{1, 2, 3}, {4, 5, 6}, {7, 9, 8}}, {{1, 2, 3}, {4, 5, 6}, {8, 7, 9}}, {{1, 2, 3}, {4, 5, 6}, {8, 9, 7}}, {{1, 2, 3}, {4, 5, 6}, {9, 7, 8}}, {{1, 2, 3}, {4, 5, 6}, {9, 8, 7}}, {{1, 2, 3}, {4, 6, 5}, {7, 8, 9}}, {{1, 2, 3}, {4, 6, 5}, {7, 9, 8}}, {{1, 2, 3}, {4, 6, 5}, {8, 7, 9}}, {{1, 2, 3}, {4, 6, 5}, {8, 9, 7}}, {{1, 2, 3}, {4, 6, 5}, {9, 7, 8}}, {{1, 2, 3}, {4, 6, 5}, {9, 8, 7}}, {{1, 2, 3}, {5, 4, 6}, {7, 8, 9}}, {{1, 2, 3}, {5, 4, 6}, {7, 9, 8}}, {{1, 2, 3}, {5, 4, 6}, {8, 7, 9}}, {{1, 2, 3}, {5, 4, 6}, {8, 9, 7}}, {{1, 2, 3}, {5, 4, 6}, {9, 7, 8}}, {{1, 2, 3}, {5, 4, 6}, {9, 8, 7}}, {{1, 2, 3}, {5, 6, 4}, {7, 8, 9}}, {{1, 2, 3}, {5, 6, 4}, {7, 9, 8}}, {{1, 2, 3}, {5, 6, 4}, {8, 7, 9}}, {{1, 2, 3}, {5, 6, 4}, {8, 9, 7}}, {{1, 2, 3}, {5, 6, 4}, {9, 7, 8}}, {{1, 2, 3}, {5, 6, 4}, {9, 8, 7}}, {{1, 2, 3}, {6, 4, 5}, {7, 8, 9}}, {{1, 2, 3}, {6, 4, 5}, {7, 9, 8}}, {{1, 2, 3}, {6, 4, 5}, {8, 7, 9}}, {{1, 2, 3}, {6, 4, 5}, {8, 9, 7}}, {{1, 2, 3}, {6, 4, 5}, {9, 7, 8}}, {{1, 2, 3}, {6, 4, 5}, {9, 8, 7}}, {{1, 2, 3}, {6, 5, 4}, {7, 8, 9}}, {{1, 2, 3}, {6, 5, 4}, {7, 9, 8}}, {{1, 2, 3}, {6, 5, 4}, {8, 7, 9}}, {{1, 2, 3}, {6, 5, 4}, {8, 9, 7}}, {{1, 2, 3}, {6, 5, 4}, {9, 7, 8}}, {{1, 2, 3}, {6, 5, 4}, {9, 8, 7}}, {{1, 3, 2}, {4, 5, 6}, {7, 8, 9}}, {{1, 3, 2}, {4, 5, 6}, {7, 9, 8}}, {{1, 3, 2}, {4, 5, 6}, {8, 7, 9}}, {{1, 3, 2}, {4, 5, 6}, {8, 9, 7}}, {{1, 3, 2}, {4, 5, 6}, {9, 7, 8}}, {{1, 3, 2}, {4, 5, 6}, {9, 8, 7}}, {{1, 3, 2}, {4, 6, 5}, {7, 8, 9}}, {{1, 3, 2}, {4, 6, 5}, {8, 7, 9}}, {{1, 3, 2}, {4, 6, 5}, {8, 9, 7}}, {{1, 3, 2}, {4, 6, 5}, {9, 7, 8}}, {{1, 3, 2}, {4, 6, 5}, {9, 8, 7}}, {{1, 3, 2}, {5, 4, 6}, {7, 8, 9}}, {{1, 3, 2}, {5, 4, 6}, {7, 9, 8}}, {{1, 3, 2}, {5, 4, 6}, {8, 7, 9}}, {{1, 3, 2}, {5, 4, 6}, {8, 9, 7}}, {{1, 3, 2}, {5, 4, 6}, {9, 7, 8}}, {{1, 3, 2}, {5, 4, 6}, {9, 8, 7}}, {{1, 3, 2}, {5, 6, 4}, {7, 8, 9}}, {{1, 3, 2}, {5, 6, 4}, {7, 9, 8}}, {{1, 3, 2}, {5, 6, 4}, {8, 7, 9}}, {{1, 3, 2}, {5, 6, 4}, {8, 9, 7}}, {{1, 3, 2}, {5, 6, 4}, {9, 7, 8}}, {{1, 3, 2}, {5, 6, 4}, {9, 8, 7}}, {{1, 3, 2}, {6, 4, 5}, {7, 8, 9}}, {{1, 3, 2}, {6, 4, 5}, {7, 9, 8}}, {{1, 3, 2}, {6, 4, 5}, {8, 7, 9}}, {{1, 3, 2}, {6, 4, 5}, {8, 9, 7}}, {{1, 3, 2}, {6, 4, 5}, {9, 7, 8}}, {{1, 3, 2}, {6, 4, 5}, {9, 8, 7}}, {{1, 3, 2}, {6, 5, 4}, {7, 8, 9}}, {{1, 3, 2}, {6, 5, 4}, {7, 9, 8}}, {{1, 3, 2}, {6, 5, 4}, {8, 7, 9}}, {{1, 3, 2}, {6, 5, 4}, {8, 9, 7}}, {{1, 3, 2}, {6, 5, 4}, {9, 7, 8}}, {{1, 3, 2}, {6, 5, 4}, {9, 8, 7}}, {{2, 1, 3}, {4, 5, 6}, {7, 8, 9}}, {{2, 1, 3}, {4, 5, 6}, {7, 9, 8}}, {{2, 1, 3}, {4, 5, 6}, {8, 7, 9}}, {{2, 1, 3}, {4, 5, 6}, {8, 9, 7}}, {{2, 1, 3}, {4, 5, 6}, {9, 7, 8}}, {{2, 1, 3}, {4, 5, 6}, {9, 8, 7}}, {{2, 1, 3}, {4, 6, 5}, {7, 8, 9}}, {{2, 1, 3}, {4, 6, 5}, {7, 9, 8}}, {{2, 1, 3}, {4, 6, 5}, {8, 7, 9}}, {{2, 1, 3}, {4, 6, 5}, {8, 9, 7}}, {{2, 1, 3}, {4, 6, 5}, {9, 7, 8}}, {{2, 1, 3}, {4, 6, 5}, {9, 8, 7}}, {{2, 1, 3}, {5, 4, 6}, {7, 8, 9}}, {{2, 1, 3}, {5, 4, 6}, {7, 9, 8}}, {{2, 1, 3}, {5, 4, 6}, {8, 9, 7}}, {{2, 1, 3}, {5, 4, 6}, {9, 7, 8}}, {{2, 1, 3}, {5, 4, 6}, {9, 8, 7}}, {{2, 1, 3}, {5, 6, 4}, {7, 8, 9}}, {{2, 1, 3}, {5, 6, 4}, {7, 9, 8}}, {{2, 1, 3}, {5, 6, 4}, {8, 7, 9}}, {{2, 1, 3}, {5, 6, 4}, {8, 9, 7}}, {{2, 1, 3}, {5, 6, 4}, {9, 7, 8}}, {{2, 1, 3}, {5, 6, 4}, {9, 8, 7}}, {{2, 1, 3}, {6, 4, 5}, {7, 8, 9}}, {{2, 1, 3}, {6, 4, 5}, {7, 9, 8}}, {{2, 1, 3}, {6, 4, 5}, {8, 7, 9}}, {{2, 1, 3}, {6, 4, 5}, {8, 9, 7}}, {{2, 1, 3}, {6, 4, 5}, {9, 7, 8}}, {{2, 1, 3}, {6, 4, 5}, {9, 8, 7}}, {{2, 1, 3}, {6, 5, 4}, {7, 8, 9}}, {{2, 1, 3}, {6, 5, 4}, {7, 9, 8}}, {{2, 1, 3}, {6, 5, 4}, {8, 7, 9}}, {{2, 1, 3}, {6, 5, 4}, {8, 9, 7}}, {{2, 1, 3}, {6, 5, 4}, {9, 7, 8}}, {{2, 1, 3}, {6, 5, 4}, {9, 8, 7}}, {{2, 3, 1}, {4, 5, 6}, {7, 8, 9}}, {{2, 3, 1}, {4, 5, 6}, {7, 9, 8}}, {{2, 3, 1}, {4, 5, 6}, {8, 7, 9}}, {{2, 3, 1}, {4, 5, 6}, {8, 9, 7}}, {{2, 3, 1}, {4, 5, 6}, {9, 7, 8}}, {{2, 3, 1}, {4, 5, 6}, {9, 8, 7}}, {{2, 3, 1}, {4, 6, 5}, {7, 8, 9}}, {{2, 3, 1}, {4, 6, 5}, {7, 9, 8}}, {{2, 3, 1}, {4, 6, 5}, {8, 7, 9}}, {{2, 3, 1}, {4, 6, 5}, {8, 9, 7}}, {{2, 3, 1}, {4, 6, 5}, {9, 7, 8}}, {{2, 3, 1}, {4, 6, 5}, {9, 8, 7}}, {{2, 3, 1}, {5, 4, 6}, {7, 8, 9}}, {{2, 3, 1}, {5, 4, 6}, {7, 9, 8}}, {{2, 3, 1}, {5, 4, 6}, {8, 7, 9}}, {{2, 3, 1}, {5, 4, 6}, {8, 9, 7}}, {{2, 3, 1}, {5, 4, 6}, {9, 7, 8}}, {{2, 3, 1}, {5, 4, 6}, {9, 8, 7}}, {{2, 3, 1}, {5, 6, 4}, {7, 8, 9}}, {{2, 3, 1}, {5, 6, 4}, {7, 9, 8}}, {{2, 3, 1}, {5, 6, 4}, {8, 7, 9}}, {{2, 3, 1}, {5, 6, 4}, {9, 7, 8}}, {{2, 3, 1}, {5, 6, 4}, {9, 8, 7}}, {{2, 3, 1}, {6, 4, 5}, {7, 8, 9}}, {{2, 3, 1}, {6, 4, 5}, {7, 9, 8}}, {{2, 3, 1}, {6, 4, 5}, {8, 7, 9}}, {{2, 3, 1}, {6, 4, 5}, {8, 9, 7}}, {{2, 3, 1}, {6, 4, 5}, {9, 7, 8}}, {{2, 3, 1}, {6, 4, 5}, {9, 8, 7}}, {{2, 3, 1}, {6, 5, 4}, {7, 8, 9}}, {{2, 3, 1}, {6, 5, 4}, {7, 9, 8}}, {{2, 3, 1}, {6, 5, 4}, {8, 7, 9}}, {{2, 3, 1}, {6, 5, 4}, {8, 9, 7}}, {{2, 3, 1}, {6, 5, 4}, {9, 7, 8}}, {{2, 3, 1}, {6, 5, 4}, {9, 8, 7}}, {{3, 1, 2}, {4, 5, 6}, {7, 8, 9}}, {{3, 1, 2}, {4, 5, 6}, {7, 9, 8}}, {{3, 1, 2}, {4, 5, 6}, {8, 7, 9}}, {{3, 1, 2}, {4, 5, 6}, {8, 9, 7}}, {{3, 1, 2}, {4, 5, 6}, {9, 7, 8}}, {{3, 1, 2}, {4, 5, 6}, {9, 8, 7}}, {{3, 1, 2}, {4, 6, 5}, {7, 8, 9}}, {{3, 1, 2}, {4, 6, 5}, {7, 9, 8}}, {{3, 1, 2}, {4, 6, 5}, {8, 7, 9}}, {{3, 1, 2}, {4, 6, 5}, {8, 9, 7}}, {{3, 1, 2}, {4, 6, 5}, {9, 7, 8}}, {{3, 1, 2}, {4, 6, 5}, {9, 8, 7}}, {{3, 1, 2}, {5, 4, 6}, {7, 8, 9}}, {{3, 1, 2}, {5, 4, 6}, {7, 9, 8}}, {{3, 1, 2}, {5, 4, 6}, {8, 7, 9}}, {{3, 1, 2}, {5, 4, 6}, {8, 9, 7}}, {{3, 1, 2}, {5, 4, 6}, {9, 7, 8}}, {{3, 1, 2}, {5, 4, 6}, {9, 8, 7}}, {{3, 1, 2}, {5, 6, 4}, {7, 8, 9}}, {{3, 1, 2}, {5, 6, 4}, {7, 9, 8}}, {{3, 1, 2}, {5, 6, 4}, {8, 7, 9}}, {{3, 1, 2}, {5, 6, 4}, {8, 9, 7}}, {{3, 1, 2}, {5, 6, 4}, {9, 7, 8}}, {{3, 1, 2}, {5, 6, 4}, {9, 8, 7}}, {{3, 1, 2}, {6, 4, 5}, {7, 8, 9}}, {{3, 1, 2}, {6, 4, 5}, {7, 9, 8}}, {{3, 1, 2}, {6, 4, 5}, {8, 7, 9}}, {{3, 1, 2}, {6, 4, 5}, {8, 9, 7}}, {{3, 1, 2}, {6, 4, 5}, {9, 8, 7}}, {{3, 1, 2}, {6, 5, 4}, {7, 8, 9}}, {{3, 1, 2}, {6, 5, 4}, {7, 9, 8}}, {{3, 1, 2}, {6, 5, 4}, {8, 7, 9}}, {{3, 1, 2}, {6, 5, 4}, {8, 9, 7}}, {{3, 1, 2}, {6, 5, 4}, {9, 7, 8}}, {{3, 1, 2}, {6, 5, 4}, {9, 8, 7}}, {{3, 2, 1}, {4, 5, 6}, {7, 8, 9}}, {{3, 2, 1}, {4, 5, 6}, {7, 9, 8}}, {{3, 2, 1}, {4, 5, 6}, {8, 7, 9}}, {{3, 2, 1}, {4, 5, 6}, {8, 9, 7}}, {{3, 2, 1}, {4, 5, 6}, {9, 7, 8}}, {{3, 2, 1}, {4, 5, 6}, {9, 8, 7}}, {{3, 2, 1}, {4, 6, 5}, {7, 8, 9}}, {{3, 2, 1}, {4, 6, 5}, {7, 9, 8}}, {{3, 2, 1}, {4, 6, 5}, {8, 7, 9}}, {{3, 2, 1}, {4, 6, 5}, {8, 9, 7}}, {{3, 2, 1}, {4, 6, 5}, {9, 7, 8}}, {{3, 2, 1}, {4, 6, 5}, {9, 8, 7}}, {{3, 2, 1}, {5, 4, 6}, {7, 8, 9}}, {{3, 2, 1}, {5, 4, 6}, {7, 9, 8}}, {{3, 2, 1}, {5, 4, 6}, {8, 7, 9}}, {{3, 2, 1}, {5, 4, 6}, {8, 9, 7}}, {{3, 2, 1}, {5, 4, 6}, {9, 7, 8}}, {{3, 2, 1}, {5, 4, 6}, {9, 8, 7}}, {{3, 2, 1}, {5, 6, 4}, {7, 8, 9}}, {{3, 2, 1}, {5, 6, 4}, {7, 9, 8}}, {{3, 2, 1}, {5, 6, 4}, {8, 7, 9}}, {{3, 2, 1}, {5, 6, 4}, {8, 9, 7}}, {{3, 2, 1}, {5, 6, 4}, {9, 7, 8}}, {{3, 2, 1}, {5, 6, 4}, {9, 8, 7}}, {{3, 2, 1}, {6, 4, 5}, {7, 8, 9}}, {{3, 2, 1}, {6, 4, 5}, {7, 9, 8}}, {{3, 2, 1}, {6, 4, 5}, {8, 7, 9}}, {{3, 2, 1}, {6, 4, 5}, {8, 9, 7}}, {{3, 2, 1}, {6, 4, 5}, {9, 7, 8}}, {{3, 2, 1}, {6, 4, 5}, {9, 8, 7}}, {{3, 2, 1}, {6, 5, 4}, {7, 8, 9}}, {{3, 2, 1}, {6, 5, 4}, {7, 9, 8}}, {{3, 2, 1}, {6, 5, 4}, {8, 7, 9}}, {{3, 2, 1}, {6, 5, 4}, {8, 9, 7}}, {{3, 2, 1}, {6, 5, 4}, {9, 7, 8}}}
I limit $a$ from 1 to 3, $b$ from 4 to 6 and $c$ from 7 to 9.
CoplanarPointsto find the equation of the planes containing the points in the abovesel2? – John Paul Peter Jan 05 '24 at 05:02Equation of the plane passing through the three points– Bob Hanlon Jan 05 '24 at 05:58