I am trying to solve:
DSolve[{Cn'[t] == CP[t]*kr - P*Cn[t]*kf,
CP'[t] == Cn[t]*P*kf + 2*CPP[t]*kr - P*CP[t]*kf - CP[t]*kr,
CPP'[t] == CP[t]*P*kf + 3*CPPP[t]*kr - P*CPP[t]*kf - 2*CPP[t]*kr,
CPPP'[t] == CPP[t]*P*kf + 4*CPPPP[t]*kr - P*CPPP[t]*kf - 3*CPPP[t]*kr,
CPPPP'[t] == CPPP[t]*P*kf - 4*CPPPP[t]*kr, CP[0] == 0, CPP[0] == 0,
CPPP[0] == 0, CPPPP[0] == Chp, Cn[0] == Chn},
{Cn[t], CP[t], CPP[t], CPPP[t], CPPPP[t]}, t]
Mathematica 9 did not give a result overnight and ate up all the memory (~6g). However it can solve
DSolve[{Cn'[t] == CP[t]*kr - P*Cn[t]*kf,
CP'[t] == Cn[t]*P*kf + CPP[t]*kr - P*CP[t]*kf - CP[t]*kr,
CPP'[t] == CP[t]*P*kf + CPPP[t]*kr - P*CPP[t]*kf - CPP[t]*kr,
CPPP'[t] == CPP[t]*P*kf + CPPPP[t]*kr - P*CPPP[t]*kf - CPPP[t]*kr,
CPPPP'[t] == CPPP[t]*P*kf - CPPPP[t]*kr, CP[0] == 0, CPP[0] == 0,
CPPP[0] == 0, CPPPP[0] == chp, Cn[0] == chn},
{Cn[t], CP[t], CPP[t], CPPP[t], CPPPP[t]}, t]
in hours. I am not very familiar with Mathematica. I wonder if there is a way to solve this system (the former one).
kr,kfandPare? If those are constants, i.e. independent of t, the system should be easily solvable in a matter of seconds, because it would be linear. – Wizard Sep 07 '13 at 00:10