How to solve the system
{b - a*Sqrt[a^2 + b^2 + 1] - a^2*(a*b - Sqrt[a^2 + b^2 + 1]) == 0,
a - b*Sqrt[a^2 + b^2 + 1] - b^2*(a*b - Sqrt[a^2 + b^2 + 1]) == 0}
The command
Solve[{b - a*Sqrt[a^2 + b^2 + 1] - a^2*(a*b - Sqrt[a^2 + b^2 + 1]) == 0,
a - b*Sqrt[a^2 + b^2 + 1] - b^2*(a*b - Sqrt[a^2 + b^2 + 1]) == 0}
,
{a, b}, Complexes]
produces, in particular,
{b -> -(a/(1 + a))}
which gives the wrong answer if $a=1.$ The answer obtained by the command
Reduce[{b - a*Sqrt[a^2 + b^2 + 1] - a^2*(a*b - Sqrt[a^2 + b^2 + 1]) == 0,
a - b*Sqrt[a^2 + b^2 + 1] - b^2*(a*b - Sqrt[a^2 + b^2 + 1]) == 0}
,
{a, b}, Complexes]
also seems untrue in the last term
(a (1 + a) (-1 + a - a^2 + a^3) != 0 && 0 == (1/(1 + a))(-1 - a - a^2 - Sqrt[(1 + a + a^2)^2/(1 + a)^2] - a Sqrt[(1 + a + a^2)^2/(1 + a)^2]) && b == -(a/(1 + a))).

