Is there a way to simplify the following equation
(-p(a-x)((a-b)P(b-x)+Q(b+x)(a-b+2x))+q(a+x)(-(a-b)Q(b+x)+P(b-x)(-a +b+2x)))/((b-x)(-a + x)(a+x)(b+x))
assuming
{p+q == 1, P + Q == 1}
in order to get
q/(-a + x) - p/(a + x) - Q/(-b + x) + P/(b + x)
? Although FullSimplify works in this case when I am using instead of p,q,P,Q variables with subscripts according to the following substitution:
{p -> Subscript[A,1], q -> Subscript[B,1], P -> Subscript[A,2], Q -> Subscript[B,2],a-> Subscript[a,1],b-> Subscript[a,2]}
FullSimplify ceases to produce the desired result! This is pretty unexpected behaviour!
FullSimplifywith assumptions works here, but gives different result than You give. What do You mean by "Simplify with assumptions does not work"? You don't get any output, errors or what? – Wojciech Jan 11 '14 at 21:27FullSimplify[(-p (a - x) ((a - b) P (b - x) + Q (b + x) (a - b + 2 x)) + q (a + x) (-(a - b) Q (b + x) + P (b - x) (-a + b + 2 x)))/((b - x) (-a + x) (a + x) (b + x)), Assumptions -> {p + q == 1, P + Q == 1}]gives the correct answer, although as Wokciech said, it is a slightly different, but nevertheless equivalent expression. – DumpsterDoofus Jan 11 '14 at 21:43FullSimplify[(-p (a - x) ((a - b) P (b - x) + Q (b + x) (a - b + 2 x)) + q (a + x) (-(a - b) Q (b + x) + P (b - x) (-a + b + 2 x)))/((b - x) (-a + x) (a + x) (b + x)), {p + q == 1, P + Q == 1}] /. {p -> Subscript[A, 1], q -> Subscript[B, 1], P -> Subscript[A, 2], Q -> Subscript[B, 2]}I get the same result I would get withoutReplaceAll, of course with p,q,P,Q instead of A1,A2,B1,B2. – Wojciech Jan 11 '14 at 22:371/(b + x) + (-1 + B1)/( a + x) +B1/(-a + x) + (2 x B2)/(b^2 - x^2)– Wojciech Jan 11 '14 at 22:41