2

In Mathematica how can I compute this integral:$$ \iiint_{D}\sqrt{(1-9z^2)(1-4y^2-9z^2)}\,dx\,dy\,dz$$ where D is the domain:

$$D: x^2 +4y^2+9z^2\le1$$

Please I need help!!!

Dr. belisarius
  • 115,881
  • 13
  • 203
  • 453
user14738
  • 21
  • 2

2 Answers2

4

This is perhaps too "creative". Some health checks needed for the series behavior:

Graphics`Region`RegionInit[];
region = (x x + 4 y y + 9 z z <= 1);
paregion = Region`ParametricRegion[{{x, y, z}, region}];
k = FullSimplify@
     Normal@Series[Sqrt[(1-9 z^2) (1-9 z^2-4 y^2)], {z,0, #},{y,0, #}] &/@ Range[1, 10, 2];
res = N@Integrate[#, {x, y, z} ∈ paregion] & /@ k

(* {0.698132, 0.488692, 0.480154, 0.477423, 0.476201} *)

So the result is near to 0.476

ListLinePlot@res

Mathematica graphics

This is where I've read first about this way for using Integrate[]

Dr. belisarius
  • 115,881
  • 13
  • 203
  • 453
4

I just did this:

Integrate[Boole[x^2 + 4*y^2 + 9*z^2 <= 1]*
 Sqrt[(1 - 9*z^2)*(1 - 4*y^2 - 9*z^2)], {z, -Infinity, Plus[Infinity]},{y, -Infinity, Plus[Infinity]}, {x, -Infinity, Plus[Infinity]}]

MMA quickly returned

64/135
Cassini
  • 5,556
  • 5
  • 28
  • 38
  • 1
    The order in which you did the integrations is important — doing x then y then z gives the quickest route through the nested integral. Other orderings seem not to evaluate. – Stephen Luttrell Jun 03 '14 at 19:42
  • 1
    Heh. Sometimes it's better to be lucky than to be smart! – Cassini Jun 03 '14 at 19:56