I'm defining functions
e[k_, t_] := Cos[Pi (k - 1) t]
cosIntRaw[k_, l_, m_] := Integrate[e[k, t] e[l, t] e[m, t], {t, 0, 1}]
cosInt[k_, l_, m_] :=
Assuming[Element[{k, l, m}, Integers], Refine[cosIntRaw[k, l, m]]]
The value that Mathematica gives me for cosInt[k,l,m] is 0.
But explicitly evaluating cosInt[1, 1, 1], I get 1. In fact, for any given value of m, the number of nonzero elements in the n$\times$n matrix whose [k,l] element is cosInt[k,l,m] grows linearly in n, said matrix having a nice banded structure.
Any idea why Mathematica gives me 0 for cosInt[k,l,m]?
Thank you!