The Eigensystem in version 10 seems to give slightly different results as in version 9:
Hmtx={{12.375, -0.06250000000000006 - 8.834874115176436*^-18*I, -1.1548235516929313*^-17 - 4.417437057588218*^-18*I, 7.507272729062478*^-19 + 2.4295903816735198*^-17*I, 3.5296840598063115*^-17 - 4.417437057588218*^-18*I, 6.284659706684547*^-19 - 2.6504622345529306*^-17*I, -1.2338675571278232*^-17 - 2.208718528794109*^-18*I, -4.6634340043469916*^-18 - 1.1043592643970545*^-18*I, 5.9846202809437726*^-18 - 1.8774107494749925*^-17*I, -5.0917886236526596*^-17 - 3.6443855725102797*^-17*I, -1.7364763179227213*^-17 + 5.2457065058860084*^-17*I}, {-0.06250000000000006 + 8.834874115176436*^-18*I, 7.875, -0.06250000000000006 - 8.834874115176436*^-18*I, -1.1548235516929313*^-17 - 4.417437057588218*^-18*I, 7.507272729062478*^-19 + 2.4295903816735198*^-17*I, 3.5296840598063115*^-17 - 4.417437057588218*^-18*I, 6.284659706684547*^-19 - 2.6504622345529306*^-17*I, -1.2338675571278232*^-17 - 2.208718528794109*^-18*I, -4.6634340043469916*^-18 - 1.1043592643970545*^-18*I, 5.9846202809437726*^-18 - 1.8774107494749925*^-17*I, -5.0917886236526596*^-17 - 3.6443855725102797*^-17*I}, {-1.1548235516929313*^-17 + 4.417437057588218*^-18*I, -0.06250000000000006 + 8.834874115176436*^-18*I, 4.375, -0.06250000000000006 - 8.834874115176436*^-18*I, -1.1548235516929313*^-17 - 4.417437057588218*^-18*I, 7.507272729062478*^-19 + 2.4295903816735198*^-17*I, 3.5296840598063115*^-17 - 4.417437057588218*^-18*I, 6.284659706684547*^-19 - 2.6504622345529306*^-17*I, -1.2338675571278232*^-17 - 2.208718528794109*^-18*I, -4.6634340043469916*^-18 - 1.1043592643970545*^-18*I, 5.9846202809437726*^-18 - 1.8774107494749925*^-17*I}, {7.507272729062478*^-19 - 2.4295903816735198*^-17*I, -1.1548235516929313*^-17 + 4.417437057588218*^-18*I, -0.06250000000000006 + 8.834874115176436*^-18*I, 1.8749999999999998, -0.06250000000000006 - 8.834874115176436*^-18*I, -1.1548235516929313*^-17 - 4.417437057588218*^-18*I, 7.507272729062478*^-19 + 2.4295903816735198*^-17*I, 3.5296840598063115*^-17 - 4.417437057588218*^-18*I, 6.284659706684547*^-19 - 2.6504622345529306*^-17*I, -1.2338675571278232*^-17 - 2.208718528794109*^-18*I, -4.6634340043469916*^-18 - 1.1043592643970545*^-18*I}, {3.5296840598063115*^-17 + 4.417437057588218*^-18*I, 7.507272729062478*^-19 - 2.4295903816735198*^-17*I, -1.1548235516929313*^-17 + 4.417437057588218*^-18*I, -0.06250000000000006 + 8.834874115176436*^-18*I, 0.3749999999999999, -0.06250000000000006 - 8.834874115176436*^-18*I, -1.1548235516929313*^-17 - 4.417437057588218*^-18*I, 7.507272729062478*^-19 + 2.4295903816735198*^-17*I, 3.5296840598063115*^-17 - 4.417437057588218*^-18*I, 6.284659706684547*^-19 - 2.6504622345529306*^-17*I, -1.2338675571278232*^-17 - 2.208718528794109*^-18*I}, {6.284659706684547*^-19 + 2.6504622345529306*^-17*I, 3.5296840598063115*^-17 + 4.417437057588218*^-18*I, 7.507272729062478*^-19 - 2.4295903816735198*^-17*I, -1.1548235516929313*^-17 + 4.417437057588218*^-18*I, -0.06250000000000006 + 8.834874115176436*^-18*I, -0.12500000000000014, -0.06250000000000006 - 8.834874115176436*^-18*I, -1.1548235516929313*^-17 - 4.417437057588218*^-18*I, 7.507272729062478*^-19 + 2.4295903816735198*^-17*I, 3.5296840598063115*^-17 - 4.417437057588218*^-18*I, 6.284659706684547*^-19 - 2.6504622345529306*^-17*I}, {-1.2338675571278232*^-17 + 2.208718528794109*^-18*I, 6.284659706684547*^-19 + 2.6504622345529306*^-17*I, 3.5296840598063115*^-17 + 4.417437057588218*^-18*I, 7.507272729062478*^-19 - 2.4295903816735198*^-17*I, -1.1548235516929313*^-17 + 4.417437057588218*^-18*I, -0.06250000000000006 + 8.834874115176436*^-18*I, 0.3749999999999999, -0.06250000000000006 - 8.834874115176436*^-18*I, -1.1548235516929313*^-17 - 4.417437057588218*^-18*I, 7.507272729062478*^-19 + 2.4295903816735198*^-17*I, 3.5296840598063115*^-17 - 4.417437057588218*^-18*I}, {-4.6634340043469916*^-18 + 1.1043592643970545*^-18*I, -1.2338675571278232*^-17 + 2.208718528794109*^-18*I, 6.284659706684547*^-19 + 2.6504622345529306*^-17*I, 3.5296840598063115*^-17 + 4.417437057588218*^-18*I, 7.507272729062478*^-19 - 2.4295903816735198*^-17*I, -1.1548235516929313*^-17 + 4.417437057588218*^-18*I, -0.06250000000000006 + 8.834874115176436*^-18*I, 1.8749999999999998, -0.06250000000000006 - 8.834874115176436*^-18*I, -1.1548235516929313*^-17 - 4.417437057588218*^-18*I, 7.507272729062478*^-19 + 2.4295903816735198*^-17*I}, {5.9846202809437726*^-18 + 1.8774107494749925*^-17*I, -4.6634340043469916*^-18 + 1.1043592643970545*^-18*I, -1.2338675571278232*^-17 + 2.208718528794109*^-18*I, 6.284659706684547*^-19 + 2.6504622345529306*^-17*I, 3.5296840598063115*^-17 + 4.417437057588218*^-18*I, 7.507272729062478*^-19 - 2.4295903816735198*^-17*I, -1.1548235516929313*^-17 + 4.417437057588218*^-18*I, -0.06250000000000006 + 8.834874115176436*^-18*I, 4.375, -0.06250000000000006 - 8.834874115176436*^-18*I, -1.1548235516929313*^-17 - 4.417437057588218*^-18*I}, {-5.0917886236526596*^-17 + 3.6443855725102797*^-17*I, 5.9846202809437726*^-18 + 1.8774107494749925*^-17*I, -4.6634340043469916*^-18 + 1.1043592643970545*^-18*I, -1.2338675571278232*^-17 + 2.208718528794109*^-18*I, 6.284659706684547*^-19 + 2.6504622345529306*^-17*I, 3.5296840598063115*^-17 + 4.417437057588218*^-18*I, 7.507272729062478*^-19 - 2.4295903816735198*^-17*I, -1.1548235516929313*^-17 + 4.417437057588218*^-18*I, -0.06250000000000006 + 8.834874115176436*^-18*I, 7.875, -0.06250000000000006 - 8.834874115176436*^-18*I}, {-1.7364763179227213*^-17 - 5.2457065058860084*^-17*I, -5.0917886236526596*^-17 + 3.6443855725102797*^-17*I, 5.9846202809437726*^-18 + 1.8774107494749925*^-17*I, -4.6634340043469916*^-18 + 1.1043592643970545*^-18*I, -1.2338675571278232*^-17 + 2.208718528794109*^-18*I, 6.284659706684547*^-19 + 2.6504622345529306*^-17*I, 3.5296840598063115*^-17 + 4.417437057588218*^-18*I, 7.507272729062478*^-19 - 2.4295903816735198*^-17*I, -1.1548235516929313*^-17 + 4.417437057588218*^-18*I, -0.06250000000000006 + 8.834874115176436*^-18*I, 12.375}};
{vals, vecs} = Eigensystem[Hmtx];
vals
vecs[[1]]
in version 9 I get:
eigenvalue
(*
{12.3759, 12.3759, 7.87525, 7.87525, 4.37545, 4.37545, 1.87605, 1.87604, 0.387613, 0.372399, -0.140221}
*)
first eigenvector
(*
{-0.000534641 + 0.00179264 I, 7.42495*10^-6 - 0.0000248957 I, -5.80038*10^-8 + 1.94486*10^-7 I, 3.45242*10^-10 - 1.15759*10^-9 I, -1.71049*10^-12 + 6.02886*10^-12 I, -1.68042*10^-11 - 3.01451*10^-14 I, 3.36278*10^-9 + 1.56589*10^-16 I, -6.45683*10^-7 + 1.38957*10^-18 I, 0.00010848 - 5.32021*10^-19 I, -0.0138864 - 1.97975*10^-18 I, 0.999902}
*)
in version 10 I get:
eigenvalue
(*
{12.3759 - 1.02031*10^-15 I, 12.3759 - 9.91618*10^-29 I, 7.87525 - 8.85813*10^-16 I, 7.87525 - 4.21836*10^-20 I, 4.37545 + 8.4819*10^-17 I, 4.37545 + 8.48193*10^-17 I, 1.87605 - 9.81335*10^-20 I, 1.87604 - 9.81346*10^-20 I, 0.387613 - 1.396*10^-22 I, 0.372399 - 1.40297*10^-22 I, -0.140221 - 1.24838*10^-24 I}
*)
first eigenvector
(*
{-0.00639256 + 0.0131895 I, 0.0000887781 - 0.000183172 I, -6.93536*10^-7 + 1.43094*10^-6 I, 4.12798*10^-9 - 8.51706*10^-9 I, -2.14113*10^-11 + 4.43576*10^-11 I, -1.67039*10^-11 - 2.21781*10^-13 I, 3.36242*10^-9 + 1.15472*10^-15 I, -6.45615*10^-7 + 1.42743*10^-17 I, 0.000108469 - 7.67751*10^-17 I, -0.0138849 - 4.92661*10^-16 I, 0.999796 + 0. I}
*)
How can I make version 10 produce the same results as version 9? How can I know which method is used in version 9? I tried to set the Method options in version 10 but still unable to get an agreement.
Edit
I agree that the comments are all right, that they are both correct results. I'm curious what's the change in the "internal mechanism", method, etc, so that it produce different correct results. I use this Eigensystem in calculating some quantum mechanic problem called high harmonic generation, which is very sensitive to small errors in the results. In theory , an overall phase change should not effect my results, but after upgrading to version 10, the noise floor in my results increase more then one order of magnitude. I'm trying to see why that happens, and this is my first stop.
Mathematica is now a language, I guess I would expect to have exactly the same results if I update the "compiler", or at least I should know why the results are different.
Chophelp? – Mr.Wizard Aug 04 '14 at 20:55Max[Abs[Im[Hmtx]]]is on the order of machine precision, and that the matrix appears to be real symmetric with the exception of what looks like machine-precision Hermitian noise, so you can simplify it quite a bit usingChop[Hmtx]. – DumpsterDoofus Aug 04 '14 at 21:19ListPlot[Diagonal[Chop@Hmtx]]), in which case the degeneracy is physically due to the reflection symmetry of the potential. If you plot the absolute value of the eigenvectors (the density) you'll see what is going on and why hybridisation is so weak. – acl Aug 04 '14 at 21:30p = SphericalPlot3D[ 1 + 2 Cos[2 \[Theta]], {\[Theta], 0, Pi}, {\[Phi], 0, 2 Pi}, Mesh -> None, PlotPoints -> 80]; povrayRender[p, "C:\\Program \ Files\\POV-Ray\\v3.7\\bin\\pvengine64.exe"]but it just gave a "File not found during Import" error. Am I using the correct filepath to Pov-Ray? – DumpsterDoofus Aug 04 '14 at 22:27povrayRender[p, "C:\Program Files\POV-Ray\v3.7\bin\pvengine.exe"], but it didn't work either. – DumpsterDoofus Aug 04 '14 at 22:37