This question may be related to a previous query at Plotting a contour on a torus My question is how do you enclose double helix structures (see demonstrations.wolfram.com/DoubleHelix ) inside an ellipsoidal cavity and also within a torus. Following the examples in the previous query, I show a typical case below for the torus, but the coils are not in phase:
With[{rr = 3, r = 1},
torus[{u_, v_}] := {(rr + r*Cos[2*Pi*u])*
Cos[2*Pi*v], (rr + r*Cos[2*Pi*u])*Sin[2*Pi*v], r*Sin[2*Pi*u]}]*
(gr = ContourPlot[
Re[2*Exp[4*Pi*I*(x + 2*y)] + 3*Exp[4*Pi*I*(x - 2*y)]] == 0, {x,
0, 1}, {y, 0, 1}]; )*
(gr1 =
ContourPlot[
Re[2*Exp[4*Pi*I*(x - 2*y)] + 3*Exp[4*Pi*I*(x + 2*y)]] == 0, {x,
0, 1}, {y, 0, 1}]; )*
Show[ParametricPlot3D[torus[{u, v}], {u, 0, 1}, {v, 0, 1},
PlotStyle -> Directive[Opacity[0.3], Red], Mesh -> None],
Graphics3D[{Blue,
Cases[Normal[gr], Line[__], Infinity] /.
Line[pts_] :> Tube[torus /@ pts]}],
Graphics3D[{Red,
Cases[Normal[gr1], Line[__], Infinity] /.
Line[pts_] :> Tube[torus /@ pts]}]]!
