Update:
xd = RandomReal[10, {100, 63}];
clX = ClusteringComponents[xd, 4, 1,
DistanceFunction -> CorrelationDistance, Method -> "KMeans"];
centroids = ComponentMeasurements[{clX}, "Centroid"]
(* {1 -> {50.6667,0.5},2 -> {53.9583,0.5},3 -> {50.6739,0.5}, 4 -> {44.3261,0.5}} *)
clxd = Transpose[ConstantArray[clX, {63}]];
Show[ArrayPlot[xd, ImageSize -> 400, AspectRatio -> 1],
ArrayPlot[clxd, ImageSize -> 400, AspectRatio -> 1,
ColorRules -> {1 -> Directive[Opacity[.5], Red],
2 -> Directive[Opacity[.5], Green],
3 -> Directive[Opacity[.5], Blue],
4 -> Directive[Opacity[.5], Yellow]}]]

Using @paw's set-up, you can also use the "Centroid" property of ComponentMeasurements as follows:
i = Import["http://jiamom.files.wordpress.com/2012/03/yin-yang.png"];
i = ImageResize[i, 200];
cl = ClusteringComponents[i, DistanceFunction -> CorrelationDistance, Method -> "KMeans"];
cm = ComponentMeasurements[{cl, i}, "Centroid"]
(* {1 -> {79.7603,112.6136},2 -> {126.6629,83.3832}} *)
Show[i, Epilog -> {PointSize[Large], Blue, Point[First/@Last/@cm], Yellow, Point[Last/@Last/@cm]}]

CorrelationDistance. – Wizard Sep 24 '14 at 21:09