I am trying to solve the Gross-Neveu model in one dimension for a specific soliton initial condition. I am trying
X[x_, t_, V_] := (x - V t)/Sqrt[1 - V^2];
T[x_, t_, V_] := (t - V x)/Sqrt[1 - V^2];
eta[x_, t_, V_, Ω_] := Sqrt[1 - Ω^2] X[x, t, V];
alpha[Ω_] := ArcCos[Ω];
beta[V_] := ArcTanh[V];
u0[x_, t_, V_, Ω_] := (Cosh[2 eta[x, t, V, Ω]] - Ω)/(2 (Ω Cosh[2 eta[x, t, V, Ω]] - 1)) Sqrt[1 - Ω^2]/Cosh[eta[x, t, V, Ω] - I/2 (alpha[Ω] - Pi)] Exp[I Ω T[x, t, V] + beta[V]/2];
v0[x_, t_, V_, Ω_] := -(Cosh[2 eta[x, t, V, Ω]] - Ω)/(2 (Ω Cosh[2 eta[x, t, V, Ω]] - 1)) Sqrt[1 - Ω^2]/Cosh[eta[x, t, V, Ω] + I/2 (alpha[Ω] - Pi)] Exp[I Ω T[x, t, V] - beta[V]/2];
V = 0;
Ω = -0.1;
L = 20;
tmax = 20;
gnm = {I (D[u[x, t], {t, 1}] + D[u[x, t], {x, 1}]) + v[x, t] +
2 v[x, t] (u[x, t] Conjugate[v[x, t]] +
v[x, t] Conjugate[u[x, t]]) == 0,
I (D[v[x, t], {t, 1}] - D[v[x, t], {x, 1}]) + u[x, t] +
2 u[x, t] (u[x, t] Conjugate[v[x, t]] +
v[x, t] Conjugate[u[x, t]]) == 0,
u[x, 0] == u0[x, 0, V, Ω],
v[x, 0] == v0[x, 0, V, Ω],
Derivative[1, 0][u][L, t] == Derivative[1, 0][u][-L, t],
Derivative[1, 0][v][L, t] == Derivative[1, 0][v][-L, t]
};
sol = NDSolve[gnm, {u, v}, {x, -L, L}, {t, 0, tmax},
Method -> {"MethodOfLines", "SpatialDiscretization" -> {"TensorProductGrid"}}]
I am getting the following error though
NDSolve::eerr: Warning: scaled local spatial error estimate of 447.1246272034737` at t = 20.` in the direction of independent variable x is much greater than the prescribed error tolerance. Grid spacing with 179 points may be too large to achieve the desired accuracy or precision. A singularity may have formed or a smaller grid spacing can be specified using the MaxStepSize or MinPoints method options.
I think I am making a silly mistake but I just can't see it.

V,L, etc. we can't reproduce your problem. BTW,InterpolatingFunctioncan't be transferred with a simple copy&paste even inside Mathematica. And you may want to have a look at this tool for your code formatting. – xzczd Oct 16 '14 at 05:08