How do I enter 3 parametric equations for cycloids corresponding to circles with radii 1, 2, and 4. I have tried
ParametricPlot[{{1 (θ - sinθ), (1 -
sinθ)}, {2 (θ - sinθ), (1 -
sinθ)}, {4 (θ - sinθ), (1 -
sinθ)}}, {θ, -2 π, 2 π}]
How do I enter 3 parametric equations for cycloids corresponding to circles with radii 1, 2, and 4. I have tried
ParametricPlot[{{1 (θ - sinθ), (1 -
sinθ)}, {2 (θ - sinθ), (1 -
sinθ)}, {4 (θ - sinθ), (1 -
sinθ)}}, {θ, -2 π, 2 π}]
Just for fun:
f[a_, t_] := a {t - Sin[t], 1 - Cos[t]}
Manipulate[
ParametricPlot[{f[1, 4 t], f[2, 2 t], f[4, t]}, {t, 0, 4 Pi},
PlotStyle -> {Red, Green, Blue},
Epilog -> {{Orange, Circle[{4 p, 1}, 1], Black, PointSize[0.015],
Point[f[1, 4 p]]}, {Orange, Circle[{4 p, 2}, 2], Black,
PointSize[0.015], Point[f[2, 2 p]]}, {Orange,
Circle[{4 p, 4}, 4], PointSize[0.015], Black,
Point[f[4, p]]}}], {p, 0, 4 Pi}]
The following animated gif was made just replacing Manipulate with Table.

Here is what I believe you are seeking:
ParametricPlot[{{1 (Theta - Sin[Theta]),
1 (1 - Cos[Theta])}, {2 (Theta - Sin[Theta]),
2 (1 - Cos[Theta])}, {4 (Theta - Sin[Theta]),
4 (1 - Cos[Theta])}}, {Theta, -10 Pi, 10 Pi},
AspectRatio -> .5, PlotRange -> {{-8 Pi, 8 Pi}, Automatic}]
The resulting Plot:

ParametricPlot[{ {Sin[theta], Cos[theta]}, 2 {Sin[theta], Cos[theta]}, 4 {Sin[theta], Cos[theta]}}, {theta, -2 Pi, 2 Pi}, ImageSize -> Medium]orParametricPlot[{ {Cos[theta], Sin[theta]}, 2 {Cos[theta], Sin[theta]}, 4 {Cos[theta], Sin[theta]}}, {theta, -2 Pi, 2 Pi}, ImageSize -> Medium]– Bob Hanlon Nov 18 '14 at 02:56