
How can combine different plots just as shown in the image? Just give codes about one example plot,and tell me how to create plots as the form as gaven. Follows are codes: n = 2; z = 200; [Alpha] = 11/3; [Lambda] = 632.8*10^-9; L0 = 1; l0 = 0.001; q = 0; [Sigma] = 0.01; [Delta]1 = 0.015; [Delta]2 = 0.01; A1 = 1; A2 = 1; B1 = 1; B2 = 1; k = 2*[Pi]/[Lambda]; f = Gamma[[Alpha] - 1]*Cos[([Alpha] [Pi])/2]/(4 [Pi]^2); g = (Gamma[5 - [Alpha]/2] f(2 [Pi])/3)^(1/([Alpha] - 5)); [Kappa]2 = g/l0; [Kappa]1 = 2 [Pi]/L0; [CapitalPhi] = Gamma[[Alpha] - 1] Cos[([Alpha] [Pi])/2]/(4 [Pi]^2) q Exp[-([Kappa]^2/([Kappa]2)^2)]/([Kappa]^2 + ([Kappa]1)^2)^(\ [Alpha]/2); integra = !( *SubsuperscriptBox[([Integral]), (0), ([Infinity])]( *SuperscriptBox[([Kappa]), (3)] [CapitalPhi] [DifferentialD]\ [Kappa])); R = ((k)^2*([Sigma])^2)/(2*(z)^2) + ((k)^2*([Pi])^2*z)/3*integra; [CapitalDelta]1 = R + 1/(8*([Sigma])^2) + 1/(2*([Delta]1)^2); [CapitalDelta]2 = R + 1/(8*([Sigma])^2) + 1/(2*([Delta]2)^2); [Gamma]x1 = (I*k)/(2*z)x + (nISqrt[2 [Pi]])/(2 [Delta]1); [Gamma]x2 = (Ik)/(2*z)x - (nISqrt[2 [Pi]])/(2[Delta]1); [Gamma]y1 = (I*k)/(2*z)x + (nISqrt[2 [Pi]])/(2[Delta]2); [Gamma]y2 = (I*k)/(2*z)x - (nISqrt[2 [Pi]])/(2[Delta]2); W1 = ((k)^2*([Sigma])^2*(A1)^2*B1)/( 4*(z)^2*[CapitalDelta]1)(Exp[([Gamma]x1)^2/[CapitalDelta]1] + Exp[([Gamma]x2)^2/[CapitalDelta]1]); W2 = ((k)^2([Sigma])^2*(A2)^2*B2)/( 4*(z)^2*[CapitalDelta]2)*(Exp[([Gamma]y1)^2/[CapitalDelta]2] + Exp[([Gamma]y2)^2/[CapitalDelta]2]); s01 = W1 + W2;
q = 10^-15; k = 2*[Pi]/[Lambda]; f = Gamma[[Alpha] - 1]*Cos[([Alpha] [Pi])/2]/(4 [Pi]^2); g = (Gamma[5 - [Alpha]/2] f(2 [Pi])/3)^(1/([Alpha] - 5)); [Kappa]2 = g/l0; [Kappa]1 = 2 [Pi]/L0; [CapitalPhi] = Gamma[[Alpha] - 1] Cos[([Alpha] [Pi])/2]/(4 [Pi]^2) q Exp[-([Kappa]^2/([Kappa]2)^2)]/([Kappa]^2 + ([Kappa]1)^2)^(\ [Alpha]/2); integra = !( *SubsuperscriptBox[([Integral]), (0), ([Infinity])]( *SuperscriptBox[([Kappa]), (3)] [CapitalPhi] [DifferentialD]\ [Kappa])); R = ((k)^2*([Sigma])^2)/(2*(z)^2) + ((k)^2*([Pi])^2*z)/3*integra; [CapitalDelta]1 = R + 1/(8*([Sigma])^2) + 1/(2*([Delta]1)^2); [CapitalDelta]2 = R + 1/(8*([Sigma])^2) + 1/(2*([Delta]2)^2); [Gamma]x1 = (I*k)/(2*z)x + (nISqrt[2 [Pi]])/(2 [Delta]1); [Gamma]x2 = (Ik)/(2*z)x - (nISqrt[2 [Pi]])/(2[Delta]1); [Gamma]y1 = (I*k)/(2*z)x + (nISqrt[2 [Pi]])/(2[Delta]2); [Gamma]y2 = (I*k)/(2*z)x - (nISqrt[2 [Pi]])/(2[Delta]2); W1 = ((k)^2*([Sigma])^2*(A1)^2*B1)/( 4*(z)^2*[CapitalDelta]1)(Exp[([Gamma]x1)^2/[CapitalDelta]1] + Exp[([Gamma]x2)^2/[CapitalDelta]1]); W2 = ((k)^2([Sigma])^2*(A2)^2*B2)/( 4*(z)^2*[CapitalDelta]2)*(Exp[([Gamma]y1)^2/[CapitalDelta]2] + Exp[([Gamma]y2)^2/[CapitalDelta]2]); s02 = W1 + W2;
q = 10^-14; k = 2*[Pi]/[Lambda]; f = Gamma[[Alpha] - 1]*Cos[([Alpha] [Pi])/2]/(4 [Pi]^2); g = (Gamma[5 - [Alpha]/2] f(2 [Pi])/3)^(1/([Alpha] - 5)); [Kappa]2 = g/l0; [Kappa]1 = 2 [Pi]/L0; [CapitalPhi] = Gamma[[Alpha] - 1] Cos[([Alpha] [Pi])/2]/(4 [Pi]^2) q Exp[-([Kappa]^2/([Kappa]2)^2)]/([Kappa]^2 + ([Kappa]1)^2)^(\ [Alpha]/2); integra = !( *SubsuperscriptBox[([Integral]), (0), ([Infinity])]( *SuperscriptBox[([Kappa]), (3)] [CapitalPhi] [DifferentialD]\ [Kappa])); R = ((k)^2*([Sigma])^2)/(2*(z)^2) + ((k)^2*([Pi])^2*z)/3*integra; [CapitalDelta]1 = R + 1/(8*([Sigma])^2) + 1/(2*([Delta]1)^2); [CapitalDelta]2 = R + 1/(8*([Sigma])^2) + 1/(2*([Delta]2)^2); [Gamma]x1 = (I*k)/(2*z)x + (nISqrt[2 [Pi]])/(2 [Delta]1); [Gamma]x2 = (Ik)/(2*z)x - (nISqrt[2 [Pi]])/(2[Delta]1); [Gamma]y1 = (I*k)/(2*z)x + (nISqrt[2 [Pi]])/(2[Delta]2); [Gamma]y2 = (I*k)/(2*z)x - (nISqrt[2 [Pi]])/(2[Delta]2); W1 = ((k)^2*([Sigma])^2*(A1)^2*B1)/( 4*(z)^2*[CapitalDelta]1)(Exp[([Gamma]x1)^2/[CapitalDelta]1] + Exp[([Gamma]x2)^2/[CapitalDelta]1]); W2 = ((k)^2([Sigma])^2*(A2)^2*B2)/( 4*(z)^2*[CapitalDelta]2)*(Exp[([Gamma]y1)^2/[CapitalDelta]2] + Exp[([Gamma]y2)^2/[CapitalDelta]2]); s03 = W1 + W2; C1 = Plot[s01, {x, -0.05, 0.05}, PlotLegends -> Placed[LineLegend[ Style[TraditionalForm[#], 16] & /@ {"!(*SubsuperscriptBox[(C), (n), \ (2)])=0"}], {0.15, 0.88}], {PlotStyle -> RGBColor[1, 0, 0]}]; C2 = Plot[ s02, {x, -0.05, 0.05}, {PlotStyle -> {Dashing[0.01], RGBColor[0, 0, 0]}, PlotLegends -> Placed[LineLegend[ Style[TraditionalForm[#], 16] & /@ {"!(*SubsuperscriptBox[(C), (n), \ (2)])=!(*SuperscriptBox[(10), (-14)])"}], {0.20, 0.75}]}]; C3 = Plot[ s03, {x, -0.05, 0.05}, {PlotStyle -> {Dashing[0.02], RGBColor[0, 0, 1]}, PlotLegends -> Placed[LineLegend[ Style[TraditionalForm[#], 16] & /@ {"!(*SubsuperscriptBox[(C), (n), \ (2)])=!(*SuperscriptBox[(10), (-15)])"}], {0.20, 0.62}]}]; Show[C1, C2, C3, PlotRange -> All]
The codes are gaven above.Thank you.