I'm trying to discretize a region with "pointy" boundaries to study dielectric breaking on electrodes with pointy surfaces. So far I've tried 3 types of boundaries, but the meshing functions stall indefinitely. I've let it run for several hours and it doesn't complete. Seems strange that it would take so long
ParametricPlot[{-Cos[u] (1.2 - Cos[(u - Pi)/2]^6) (0.2 +
Cos[10 u]^10),
Sin[u] (1.2 - Cos[(u - Pi)/2]^6) (0.2 + Cos[10 u]^10)}, {u, 0,
2 Pi}, PlotRange -> All]
ir = ParametricRegion[{{r Cos[u], r Sin[u]},
0 <= u <= 2 Pi &&
0 <= r <= (0.5 +
Cos[(u - (Pi/2))/2]^8 Cos[14 (u - (Pi/2))]^8)}, {r, u}]
ird = DiscretizeRegion[ir, MaxCellMeasure -> 0.02] (* never completes *)
Needs["NDSolve`FEM`"]
m = ToElementMesh[ir,
"BoundaryMeshGenerator" -> {"RegionPlot", "SamplePoints" -> 50},
"MeshOrder" -> 1] (* never completes *)
Another attempt:
ParametricPlot[{
Cos[u] Max[
0.1, -Cos[u]] (1.2 -
Abs[Sin[10 Abs[((u - Pi))^(1/2)]]^(1/3)]), (1.2 -
Abs[Sin[10 Abs[((u - Pi))^(1/2)]]^(1/3)]) Sin[u] Max[
0.1, -Cos[u]]}, {u, 0, 2 Pi}, PlotRange -> All]
ir2 = ParametricRegion[{{r Cos[u], r Sin[u]},
0 <= u <= 2 Pi &&
0 <= r <=
Max[0.1, -Cos[u]] (1.2 -
Abs[Sin[10 Abs[((u - Pi))^(1/2)]]^(1/3)])}, {r, u}]
m = ToElementMesh[ir2,
"BoundaryMeshGenerator" -> {"RegionPlot", "SamplePoints" -> 50},
"MeshOrder" -> 1] (* never completes *)
Last attempt:
ParametricPlot[{-Cos[u] (1.2 - Cos[(u - Pi)/2]^6) (0.2 +
Cos[10 u]^10),
Sin[u] (1.2 - Cos[(u - Pi)/2]^6) (0.2 + Cos[10 u]^10)}, {u, 0,
2 Pi}, PlotRange -> All]
ir3 = ParametricRegion[{{r Cos[u], r Sin[u]},
0 <= u <= 2 Pi &&
0 <= r <= (1.2 - Cos[(u - Pi)/2]^6) (0.2 + Cos[10 u]^10)}, {r, u}]
m = ToElementMesh[ir3,
"BoundaryMeshGenerator" -> {"RegionPlot", "SamplePoints" -> 50},
"MeshOrder" -> 1] (* never completes *)





ParametricRegioncan not be converted to anImplikcitRegiona message will be generated indicating that this conversion failed. Using anImplicitRegionis the way to go. – user21 Jan 19 '15 at 10:00