I have the following matrix;
matrix={{0.213052 - 5.52399*10^-18 I, 0.123451 + 0.215784 I,
0.0771636 + 0.298479 I}, {0.123451 - 0.215784 I,
0.328615 - 4.47928*10^-18 I,
0.367929 + 0.0925207 I}, {0.0771636 - 0.298479 I,
0.367929 - 0.0925207 I, 0.458333 - 8.30535*10^-18 I}}
when I found Eigenvectors[matrix] in Mathematica 9, it gave the following output;
{{0.117433 + 0.4424 I, 0.552311 + 0.14137 I, 0.682245 + 0. I}, {-0.131023 - 0.625986 I, 0.730765 + 0. I, -0.163119 + 0.174212 I}, {0.010945 - 0.617533 I, -0.372767 + 0.0446533 I, 0.691075 + 0. I}}
But when I found Eigenvectors[matrix] in Mathematica 10, it gave different output which is;
{{-0.117433 - 0.4424 I, -0.552311 - 0.14137 I, -0.682245 + 0. I}, {-0.367396 + 0.523493 I, -0.499467 - 0.533433 I, 0.238658 + 0. I}, {0.010945 - 0.617533 I, -0.372767 + 0.0446533 I, 0.691075 + 0. I}}
After all my calculations the out put obtained from Mathematica 9 gives correct final result.
How i can understand this problem? And how to handle it? Thanks.